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Es9ma9on	  Theory	  with	  Eyes	  on	  	  
Weather	  Predic9on	  

Ricardo	  Todling	  
NASA	  Global	  Modeling	  and	  Assimila9on	  Office	  

	  
The	  JCSDA	  Summer	  Colloquium	  on	  Satellite	  Data	  Assimila5on	  

Ft.	  Collins,	  CO,	  27	  July	  to	  7	  August	  2015	  
	  
	  

Warning:	  This	  is	  by	  no	  means	  an	  exhaus3ve	  introduc3on	  to	  the	  subject.	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  First	  Presented	  to	  the	  Par9cipants	  of	  the	  2013	  
	  UMD	  Summer	  School	  on	  Data	  Assimila9on	  during	  their	  visit	  to	  NASA	  



Es9ma9ng	  the	  Weather	  
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CLICK HERE FOR DAILY WEATHER MAPS ONLINE 
http://docs.lib.noaa.gov/rescue/dwm/data_rescue_daily_weather_maps.html 

1871 Nov. 1 Q First weather map, issued by U.S. Army Signal Service with isobars.  
Synop

 
sis and probabilities enlarged below. 84-‐hr	  Fcst	  for	  Today’s	  12	  UTC	   1	  Nov	  1871:	  First	  weather	  map,	  issued	  by	  

U.S.	  Army	  Signal	  Service	  (showing	  isobars;	  *)	  Example 2: de Angelis taught, 

 
"The surest remedy against thunder is that which our Holy Mother the Church practises,  
namely, the ringing of bells when a thunderbolt impends: thence follows a twofold effect,  
physical and moral--a physical, because the sound variously disturbs and agitates the air,  
and by agitation disperses the hot exhalations and dispels the thunder; but the moral effect is  
the more certain, because by the sound the faithful are stirred to pour forth their prayers, by which 
they win from God the turning away of the thunderbolt." 

 

 

 
 
 

 

1686 Q England, Edmund Halley (1656 Q 1742) published 

the first comprehensive map  of trade winds. He is the 

comet guy and the first to connect earth^s general 

circulation with the distribution of solar heating . 

 

 

 

 

 

 
Halley^s map of the trade winds and monsoon winds. 
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1686	  Edmund	  Halley	  first	  map	  of	  the	  trade	  winds	  (*):	  
connec9ng	  general	  circula9on	  with	  solar	  hea9ng	  distribu9on	  

(*)	  source:	  www.shorstmeyer.com/msj/geo165/met_hist.pdf 	  	  -‐	  Steve	  Horstmeyer	  

When	  did	  it	  all	  begin?	  
Steven	  Horstmeyer’s:	  
“An	  Outline	  of	  the	  History	  of	  	  
Meteorology”	  is	  a	  wonderful	  
presenta9on	  you	  should	  consult.	  

The	  presenta9on	  is	  a	  way	  more	  
modest	  illustra9ve	  short	  history	  
of	  es9ma9on	  for	  NWP.	  	  



“We	  know	  today,	  mainly	  due	  to	  the	  work	  of	  J.	  Charney,	  that	  we	  
can	  predict	  by	  calcula3on	  the	  weather	  over	  an	  area	  like	  that	  of	  
the	  United	  States	  for	  a	  dura3on	  like	  24	  hours	  [.	  .	  .].	  We	  know	  
that	  this	  gives	  results	  which	  are,	  by	  and	  large,	  as	  good	  as	  what	  
an	  experienced	  ‘subjec3ve’	  forecaster	  can	  achieve,	  and	  this	  is	  
very	  respectable.”	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  John	  von	  Neumann,	  1954.	  	  	  



Data	  Assimila9on	  or	  …	  ?	  
•  Inverse	  Problems	  
•  Stochas9c	  Es9ma9on	  
•  Distributed	  Parameter	  Es9ma9on	  
•  Lumped	  Parameter	  Es9ma9on	  
•  Op9mal	  Filtering	  and	  Smoothing	  
•  Bayesian	  Es9ma9on	  
•  Least	  Squares	  Es9ma9on	  
•  Absolute	  Averaging	  	  

When	  did	  ideas	  on	  es3ma3on	  emerge?	  	  

My	  main	  sources:	  Hacking,	  Franklin,	  Lanczos,	  McGee	  &	  Schmidt	  and	  sprinkles	  from	  many	  others.	  

Minimiza9on	  
Uncertainty	  
Probability	  



Outline	  
1.  Least;	  Extremum;	  Mimimum	  
2.  Uncertainty	  
3.  Probability	  
4.  Two	  Real-‐Like	  Applica9ons	  

q  The	  Apollo	  Missions	  
q  Predic9ng	  the	  Weather	  

5.  Closing	  Remarks	  



Least	  

Extremum	  

Minimum	  



Hero	  of	  Alexandria	  
	  	  B.	  c	  10	  AD	  

Hero	  showed	  that	  the	  path	  taken	  by	  a	  	  
light	  ray	  going	  from	  an	  object	  to	  a	  mirror	  	  
and	  from	  the	  mirror	  to	  an	  observer,	  is	  the	  shortest	  of	  any	  path	  going	  from	  the	  object	  	  
to	  the	  eye	  of	  the	  observer	  via	  the	  mirror.	  	  He	  derived	  the	  law	  of	  reflec3on.	  

The	  Shortest	  Path	  

	  	  Aristotle	  
384-‐322	  BC	  

Modified	  from	  starchild.gsfc.nasa.gov	  

Hero’s	  thinking	  was	  consistent	  with	  
that	  of	  Aristotle,	  who	  thought	  
that	  planets	  moved	  in	  circles	  
because	  they	  were	  the	  shortest	  	  
closed	  path	  an	  object	  could	  trace	  
when	  going	  around	  another.	  

Combined	  with	  the	  maximum	  speed	  of	  mo3on,	  Hero’s	  
thinking	  leads	  to	  the	  concept	  of	  the	  shortest	  3me	  traveled.	  



The	  Principle	  of	  Least	  Time	  

Pierre	  de	  Fermat	  
	  	  e1600-‐1655	  

reflec9on	  

refrac9on	  

θi	   θr	  

θR	  

n1	  
n2	  

Ibn	  Sahl	  manuscript	  of	  984,	  	  
describing	  the	  law	  of	  refrac9on	  
six	  centuries	  before	  Snell-‐Descartes	  

Fermat	  derived	  the	  law	  of	  refrac3on	  by	  	  
using	  Hero’s	  principle	  of	  shortest	  9me	  traveled.	  	  

A	  similar	  problem	  of	  interest	  was	  that	  of	  the	  brachistochrone	  	  
–	  the	  curve	  of	  quickest	  descent	  –	  proposed	  by	  Johann	  	  
Bernoulli,	  and	  solved	  by	  Newton,	  	  Jakob	  Bernoulli	  (brother),	  	  
Leibniz,	  Tschirnhaus,	  and	  l’Hopital.	  Jakob	  B.’s	  solu9on	  was	  
based	  on	  Fermat’s	  least	  9me	  traveled.	  	  

Simula9on	  from	  
hnp://curvebank.calstatela.edu/brach/brach.htm	  
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The	  Principle	  of	  Least	  Ac9on	  

Pierre-‐Louis	  de	  Maupertuis	  
	  	  	  	  	  	  	  	  	  	  	  	  1698-‐1759	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Leibniz	  argued	  that	  the	  principles	  of	  nature	  could	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  be	  expressed	  in	  the	  terms	  of	  minimum	  principles.	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  This	  went	  along	  with	  his	  vision	  that	  we	  live	  in	  the	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ‘best	  of	  all	  possible	  worlds’.	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  But	  it	  was	  Maupertuis	  who	  explained	  the	  impact	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  of	  bodies	  by	  assuming	  the	  product	  mvs	  to	  be	  a	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  minimum	  following	  D’Alembert’s	  principle.	  The	  	  
	  	  	  quan99es	  mvs	  was	  named	  ac3on.	  He	  showed	  how	  Fermat’s	  principle	  
	  	  	  of	  least	  3me	  can	  be	  replaced	  by	  the	  principle	  of	  least	  ac3on.	  
	  
Euler	  generalized	  Maupertuis	  principle	  into	  an	  integral	  theorem	  applicable	  to	  
mo9on	  of	  par9cles	  subjected	  to	  a	  conserva9ve	  force.	  	  The	  ac9on	  principle	  
was	  recognized	  to	  be	  a	  principle	  of	  extremum.	  	  
	  
Lagrange	  extended	  Euler’s	  principle	  introducing	  the	  feature	  of	  invariance	  with	  
respect	  to	  arbitrary	  change	  of	  coordinates,	  and	  developed	  along	  the	  way	  the	  
calculus	  of	  varia3ons.	  He	  set	  the	  founda9ons	  of	  analy9c	  mechanics.	  	  
	  
Hamilton	  transformed	  the	  second	  order	  differen9al	  equa9ons	  of	  Lagrange	  into	  
a	  more	  desirable	  set	  of	  first	  order	  differen9al	  equa9ons	  with	  double	  the	  number	  	  
of	  variables	  –	  called	  “canonical	  form”	  –	  promp9ng	  a	  new	  world	  of	  discoveries.	  	  
	  

	  	  	  	  Based	  on	  
Lanczos	  (1949)	  



Uncertainty	  



Accoun9ng	  for	  Uncertainty	  
Another	  contribu9on	  from	  Galileo	  	  

Constella9on	  of	  Cassiopeia	  
showing	  Tycho	  Brahe’s	  nova	  
of	  1572.	  

Tycho	  Brahe	  refuted	  the	  Aristolelian	  belief	  in	  the	  unchanged	  
sphere	  of	  the	  fixed	  start	  (beyond	  the	  Moon),	  but	  controversy	  
remained.	  

In	  1621	  Scipione	  ChiaramonC	  published	  results	  from	  a	  compara9ve	  
study	  examining	  observa9ons	  of	  star	  eleva9on	  made	  by	  13	  	  
astronomers.	  	  He	  looked	  at	  12	  pairs	  of	  observa9ons	  and	  concluded	  
the	  es9mated	  distances	  from	  each	  measurement	  to	  be	  less	  than	  
the	  distance	  of	  the	  moon.	  	  Being	  an	  Aristotelian,	  he	  wanted	  to	  	  
show	  the	  heavens	  to	  be	  unchanging.	  

	  	  	  	  	  Based	  on	  
Franklin	  (2001)	  

Galileo	  points	  out	  that	  of	  the	  65	  possible	  pairs	  Chiaramon9	  chose	  only	  those	  suppor9ng	  
his	  belief.	  Galileo	  re-‐evaluates	  the	  maner	  by	  realizing	  that	  observa9ons	  are:	  
	  	  (i)	  “equally	  prone	  to	  err	  in	  one	  direc9on	  and	  the	  other”;	  and	  that	  	  
	  (ii)	  carefully	  taken	  measurements	  are	  “more	  likely	  to	  err	  linle	  than	  much”	  
	  
Galileo’s	  solu9on	  is	  to	  choose	  the	  posi9on	  that	  makes	  the	  sum	  of	  the	  correc3ons	  least.	  
	  
Galileo	  was	  then	  able	  to	  show	  that	  indeed,	  Tycho	  Brahe	  was	  right	  in	  saying	  the	  nova	  had	  
appeared	  in	  the	  unchanging	  sphere	  of	  the	  stars!	  



The	  Principle	  of	  Least	  Constraint	  &	  	  
The	  Least	  Squares	  Method	  
Gauss:	  from	  extremum	  to	  minimum	  	  

Johann	  Carl	  Friedrich	  Gauss	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  1777-‐1855	  

Up	  to	  about	  the	  9me	  of	  Gauss	  all	  principles	  of	  ac9on	  led	  to	  an	  
extremum	  solu9on,	  not	  necessarily	  a	  minimum.	  Star9ng	  from	  
D’Alembert’s	  principle	  of	  equilibrium	  of	  forces	  ac9ng	  on	  a	  system	  

	  	  	  	  	  Based	  on	  
Lanczos	  (1949)	  

which	  has	  the	  advantage	  of	  its	  sta3onary	  solu3on	  being	  automa9cally	  a	  minimum	  –	  	  
essen9ally	  because	  mi	  >	  0.	  
	  
Though	  this	  does	  provide	  a	  more	  complicated	  solu9on	  to	  the	  problem	  requiring	  evalua9on	  
of	  the	  accelera9ons	  Gauss	  was	  par9cularly	  married	  to	  this	  principle	  since	  it	  directly	  related	  
to	  his	  formula9on	  of	  the	  least	  squares	  method.	  Here,	  the	  external	  forces	  could	  be	  thought	  
as	  observa9ons,	  the	  force	  of	  iner9a	  as	  the	  true	  forces,	  and	  the	  mass	  could	  be	  interpreted	  
as	  weights	  given	  accoun9ng	  for	  different	  quality	  of	  the	  measurements.	  	  

D’Alembert’s principle
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Gauss	  showed	  it	  to	  be	  equivalent	  to	  the	  principle	  of	  least	  
constraint	  	  
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The	  Least	  Squares	  Method	  
Laplace	  and	  Gauss:	  orbit	  of	  celes9al	  objects	  from	  observa9ons	  

	  	  	  	  	  	  	  	  Based	  on	  
Lewis	  et	  al.	  	  (2006)	  

(a)  the	  algebraic	  sum	  of	  residuals	  should	  vanish,	  and	  
(b)  the	  sum	  of	  the	  absolute	  values	  of	  the	  residuals	  should	  be	  a	  
	  	  	  	  	  	  	  minimum	  [recall	  our	  story	  on	  Galileo	  a	  few	  slides	  back].	  

The	  desire	  to	  determine	  present	  and	  future	  posi9on	  of	  celes9al	  
bodies	  has	  been	  with	  us	  since	  we	  first	  wondered	  about	  the	  heavens.	  
The	  Babylonians	  and	  Greeks	  kept	  extensive	  observa9ons	  of	  the	  skies.	  
Galileo,	  Kepler,	  and	  Newton	  made	  known	  breakthroughs	  in	  using	  
observa9ons	  and	  to	  explain	  the	  skies.	  Laplace,	  Lagrange	  and	  others	  	  
provide	  us	  with	  profound	  insights	  in	  methods	  to	  determine	  the	  path	  	  
of	  comets	  from	  observa9ons.	  	  Laplace,	  in	  par9cular,	  introduced	  	  
concepts	  fundamental	  to	  our	  story:	  

By	  the	  late	  1700s,	  early	  1800s,	  the	  race	  was	  on	  to	  predict	  the	  reappearance	  of	  Ceres,	  a	  
planet	  discovered	  between	  Mars	  and	  Jupiter.	  On	  November	  1801,	  	  
Gauss	  predicted	  the	  planet’s	  future	  path.	  His	  results	  were	  confirmed	  
on	  January	  1,	  1802	  by	  Franz	  Zach	  and	  Heinrich	  Olbers	  at	  two	  different	  
observatories	  in	  Germany.	  	  

Ceres	  from	  Hubble.	  Today	  
known	  as	  a	  planetoid	  in	  
the	  asteroid	  belt.	  	  
Photo	  from	  jpl.nasa.gov	  

Gauss	  solu9on	  combines	  Newton’s	  itera9ve	  method	  to	  solve	  	  
nonlinear	  eqs,	  with	  his	  own	  development	  of	  the	  Least	  Squares	  Method.	  



Probability	  



The	  Concepts	  of	  Probability	  Become	  	  
Mathema9cal	  

From	  India	  to	  Pascal	  and	  Fermat	  

Though	  concepts	  of	  probability	  only	  started	  to	  mature	  aver	  the	  
mathema9cal	  forms	  more	  familiar	  to	  us,	  the	  story	  of	  Nala,	  told	  
in	  the	  Indian	  Sunskrit	  epic	  Mahābhārata,	  who	  possessed	  by	  a	  rival	  
demigod	  loses	  his	  empire	  to	  gambling.	  Only	  aver	  	  coming	  across	  	  
Rturpana	  and	  learning	  the	  science	  of	  es9ma9on	  is	  Nala	  able	  to	  
regain	  his	  empire	  and	  his	  beloved	  DamayanC	  in	  a	  game.	  

	  	  	  	  	  	  	  Based	  on	  
Hacking	  	  (1975)	  
	  	  	  	  	  	  	  	  	  	  	  &	  
	  Franklin	  (2001)	  

Formal	  understanding	  of	  the	  concept	  of	  averaging	  (expecta3on)	  is	  rela9vely	  new,	  da9ng	  from	  	  
the	  1650’s	  and	  the	  correspondences	  between	  Fermat	  and	  Pascal.	  	  Our	  present-‐day	  concept	  
of	  probability	  dates	  back	  from	  that	  period.	  Thoughts	  and	  needs	  in	  various	  areas	  from	  law,	  	  
gambling,	  economics,	  agriculture,	  and	  theology	  all	  combined	  to	  form	  what	  we	  know	  today.	  	  

Nala	  meets	  his	  beloved	  	  
Damayan9	  who’s	  chosen	  him	  
over	  the	  Gods.	  c	  A.D.	  400;	  From	  
hnp://en.wikipedia.org/wiki/Nala	  

In	  the	  words	  of	  Ian	  Hacking	  ``That	  is	  evidence	  that	  in	  India,	  long	  	  
ago,	  it	  was	  recognized	  that	  there	  was	  a	  genuine	  science	  to	  master	  …”	  	  

Basic	  concepts	  of	  averaging	  go	  as	  far	  back	  as	  the	  Greeks.	  Hipparchus,	  about	  150	  BCE,	  was	  
able	  to	  develop	  geometric	  models	  to	  fit	  the	  vast	  Babylonian	  observa9ons	  of	  the	  stars.	  His	  
eccentric	  circles	  with	  epicycles	  are	  made	  to	  fit	  the	  observa9ons	  in	  a	  method	  close	  to	  what	  
we	  call	  regression.	  	  But	  the	  link	  between	  averaging	  and	  probability	  didn’t	  come	  un9l	  later.	  



The	  Concepts	  of	  Probability	  Become	  	  
Mathema9cal	  
Becoming	  Bayesian	  

	  	  	  	  	  	  	  Based	  on	  
Hacking	  	  (1975)	  

What	  does	  it	  mean	  to	  be	  ``Bayesian’’?	  It	  means	  we	  ``believe’’	  we	  can	  use	  the	  outcome	  of	  past	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  events	  to	  infer	  the	  chances	  of	  a	  certain	  outcome	  in	  the	  next	  trail.	  

Stephen E. Fienberg 3

Bayesian revival of the 1950s and especially during the 1960s. Today, Bayesian methods
are integrated into both the fabric of statistical thinking within the field of statistics
and the methodology used in a broad array of applications. The ubiquity of Bayesian
statistics is illustrated by the name of the International Society for Bayesian Analysis,
its growing membership, and its new on-line journal. But one can also see the broad
influence of Bayesian thinking by a quick scan of major journals of not only statistics
but also computer science and bioinformatics, economics, medicine, and even physics,
to name specific fields.

This paper is far from an exhaustive treatment of the subject, for that would have
taken a book. Rather, I have chosen to cite a few key contributions as part of the his-
torical development, especially as they relate to the theme of the adjective “Bayesian.”
I cite many (but not all) relevant books and a small fraction of the papers that were
part of the development of Bayesian inference.

2 Bayes’ Theorem

My story begins, of course, with the Reverend Thomas Bayes,8 a nonconformist En-
glish minister whose 1763 posthumously published paper, “An Essay Towards Solving a
Problem in the Doctrine of Chances,” (14) contains what is arguably the first detailed
description of the theorem from elementary probability theory now associated with his
name. Bayes’ paper, which was submitted for publication by Richard Price, is remark-
ably opaque in its notation and details, and the absence of integral signs makes for
difficult reading to those of us who have come to expect them.

The Essay considers the problem, “Given the number of times in which an unknown
event has happened and failed: Required the chance that the probability of its happen-
ing in a single trial lies somewhere between any two degrees of probability that can
be named.” [p. 376] Writing in an unpublished 1960 reading note, L.J. Savage (143)
observed: “The problem is of the kind we now associate with Bayes’s name, but it is
confined from the outset to the special problem of drawing the Bayesian inference, not
about an arbitrary sort of parameter, but about a ‘degree of probability’ only.” This
statement actually provides us with the first clue to the title of this article; clearly in
1960, Savage was using the term “Bayesian” as we do today. And he notes what others
have subsequently: that Bayes did not actually give us a statement of Bayes’ Theorem,
either in its discrete form,

P (Bi|A) =
P (A|Bi)P (Bi)∑
j P (A|Bj)P (Bj)

, (1)

(this came later in Laplace (97)), or in its continuous form with integration, although
he solved a special case of the latter.

In current statistical language, Bayes’ paper introduces a uniform prior distribution
on the binomial parameter,9 θ, reasoning by analogy with a “billiard table” and drawing

8For biographical material on Bayes see Bellhouse (16) and Dale (37).
9Of course Bayes didn’t use the term parameter—David and Edwards (41) trace the introduction

Actually	  due	  to	  Laplace	  (1774)	  

In	  ``When	  	  Did	  Bayesian	  Inference	  Become	  
“Bayesian”?’’,	  Stephen	  Fienberg	  traces	  the	  roots	  
of	  our	  present-‐day	  referencing	  to	  Thomas	  Bayes	  
approach	  to	  probability	  problems.	  

Rev.	  Thomas	  Bayes	  
	  	  	  	  	  	  c1701-‐1761	  

Laplace	  played	  a	  fundamental	  role	  in	  solidifying	  concepts	  in	  probability,	  but	  it	  wasn’t	  un9l	  
early	  in	  the	  1900s	  that	  Bayes	  thinking	  gained	  momentum,	  and	  eventually	  influenced	  a	  huge	  
body	  of	  work:	  Fisher,	  Neyman,	  Pearson,	  Carnap,	  Kolmogorov,	  Turing,	  Keynes,	  &	  others.	  	  

For	  us,	  our	  main	  interest	  in	  Bayesian	  probability	  is	  that	  it	  essen9ally	  provides	  the	  proper	  link	  
among	  various	  formula9ons	  of	  the	  es9ma9on	  problem.	  	  



Lp	  Norms	  in	  Es9ma9on	  

When a traveler reaches a fork in the road, the L1-norm 
tells him to take either one way or the other, the L2-norm 
instructs him to head off into the bushes.�

J.	  G.	  Clearbout	  &	  F.	  Muir,	  (1973);	  	  quoted	  in	  Tarantola	  (2005)	  

We	  have	  seen	  that	  Galileo	  and	  Laplace	  
have	  chosen	  the	  requirement	  that	  the	  	  
absolute-‐value	  of	  the	  residual	  error	  be	  
minimal	  when	  trying	  to	  come	  up	  with	  
the	  es9mates	  they	  sought.	  

We	  have	  also	  seen	  that	  Gauss	  added	  
an	  alterna9ve	  requiring	  the	  square	  of	  	  
the	  residual	  error	  to	  be	  a	  minimum.	  

We	  can	  show	  that	  least-‐squares	  is	  in9mately	  related	  to	  
Gaussian	  probability	  distribu5on.	  	  
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e.g.,	  Tarantola	  (2005)	  
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More	  generally,	  there	  is	  a	  class	  of	  problems	  based	  on	  
Lp	  norms	  with	  associated	  probability	  distribu9ons	  
that	  are	  bener	  than	  the	  familiar	  L2	  norm	  (Gaussian)	  
to	  handle	  certain	  types	  of	  situa9ons,	  e.g.,	  outliers.	  



The	  Kalman	  Filter:	  Problem	  

X(0 = 4>(t, U)x(to) + ft' <f(<, r)G(r)u(r)dr (3) 

where we call <I>(t, <o) the transition matrix of (1). The transition 
matrix is a nonsingular matrix satisfying the differential equation 

d®/dt = F(t)<I> (4) 

(any such matrix is a fundamental matrix [23, Chapter 3]), made 
unique by the additional requirement that, for all to, 

*&(to, k) = I = unit matrix (5) 

The following properties are immediate by the existence and 
uniqueness of solutions of (1): 

k) = 4>(«o, <i) for all to, t, (6) 

k) = 4>(/2, <i)«»(<i> k) for all to, U, h (7) 

If F = const, then the transition matrix can be represented by 
the well-known formula 

�� �

4>(t, k) = exp F(t - t0) = IF(< - fc)]'/*' ( 8 ) 
i = 0 

which is quite convenient for numerical computations. In this 
special case, one can also express analytically in terms of the 
eigenvalues of F, using either linear algebra [22] or standard 
transfer-function techniques [14]. 

In some eases, it is convenient to replace the right-hand side of 
(3) by a notation that focuses attention on how the state of the 
system "moves" in the state space as a function of time. Thus 
we write the left-hand side of (3) as 

x(0 = «!>(<; x, to; u) (9) 

Read: The state of the system (1) at time t, evolving from the 
initial state x = x(to) at time k under the action of a fixed forcing 
function u(t). For simplicity, we refer to <j> as the motion of the 
dynamical system 

4 Statement of Problem 
We shall be concerned with the continuous-time analog of 

Problem I of reference [11], which should be consulted for the 
physical motivation of the assumptions stated below. 

(Ai) The message is a random process x(t) generated by the 
model 

dx/dt = F(t)x + G(t)u(t) (10) 

The observed signal is 

z(t) = y (t) + v( t ) = H « ) x ( t ) + v(t ) ( i i ; 

The functions u(t), v(t) in (10-11) are independent random proc-
esses (white noise) with identically zero means and covariance 
matrices 

c o v [U(0, U(T)] = Q ( I ) - 8 ( 1 - T) 

cov [v(0, v(r)] = R(t)-5(t - T) for all t, r (12) 

cov [u(t), v(r)] = 0 

where 8 is the Dirac delta function, and Q(t), R(t) are symmetric, 
nonnegative definite matrices continuously differentiable in t. 

We introduce already here a restrictive assumption, which is 
needed for the ensuing theoretical developments: 

(A2) The matrix R(t) is positive definite for all I. Physically, 
this means that no component of the signal can be measured 
exactly. 

To determine the random process x(t) uniquely, it is necessary 

to add a further assumption. This may be done in two different 
ways: 

(A3) The dynamical system (10) has reached "steady-state" 
under the action of u(I), in other words, x(l) is the random func-
tion defined by 

x(l) = J' ^ 4>(t, r)G(r)u(r)dr (13) 

This formula is valid if the system (10) is uniformly asymp-
totically stable (for precise definition, valid also in the noncon-
stant case, see [21]). If, in addition, it is true that F, G, Q are 
constant, then x(i) is a stationary random process—this is one of 
the chief assumptions of the original Wiener theory. 

However, the requirement of asymptotic stability is incon-
venient in some cases. For instance, it is not satisfied in Example 
5, which is a useful model in some missile guidance problems. 
Moreover, the representation of random functions as generated 
by a linear dynamical system is already an appreciable restriction 
and one should try to avoid making any further assumptions. 
Hence we prefer to use: 

(A3') The measurement of i(t) starts at some fixed instant to 
of time (which may be — <°), at which time cov[x(to), x(io)] is 
known. 

Assumption (A3) is obviously a special case of (A / ) . Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 

The main object of the paper is to study the 
OPTIMAL ESTIMATION PROBLEM. Given known values 

of Z(T) in the time-interval k ^ r t, find an estimate x(ti|t) of 
x(ti) of the form 

*(<i|0 = A ( t „ r)z(r)dr (14) 

(where A is an n X p matrix whose elements are continuously 
differentiable in both arguments) with the properly that the expected 
squared error in estimating any linear function of the message is 
minimized: 

S[x*, x(ti) - x(t,|t)]2 = minimum for all x* (15) 

Remarks, (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 

6||x(fe) - x(t,|tf 

(b) In view of (Ai), it is clear that Sx(ti) = Sx(ti[t) = 0. 
Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
estimate of the value of any costate x* at x(t\). 

(c) If Su(t) is unknown, we have a more difficult problem which 
will be considered in a future paper. 

(d) It may be recalled (see, e.g., [11]) that if u and v are 
gaussian, then so are also x and 1, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
other loss functions. 

(e) The representation of white noise in the form (12) is not 
rigorous, because of the use of delta "functions." But since the 
delta function occurs only in integrals, the difficulty is easily re-
moved as we shall show in a future paper addressed to mathema-
ticians. All other mathematical developments given in the paper 
are rigorous. 

The solution of the estimation problem under assumptions 
(Ai), (A2), (A3') is stated in Section 7 and proved in Section 8. 

5 The Dual Problem 
It will be useful to consider now the dual of the optimal estima-

tion problem which turns out to be the optimal regulator problem 
in the theory of control. 
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by a linear dynamical system is already an appreciable restriction 
and one should try to avoid making any further assumptions. 
Hence we prefer to use: 

(A3') The measurement of i(t) starts at some fixed instant to 
of time (which may be — <°), at which time cov[x(to), x(io)] is 
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Assumption (A3) is obviously a special case of (A / ) . Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
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The main object of the paper is to study the 
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Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
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(c) If Su(t) is unknown, we have a more difficult problem which 
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gaussian, then so are also x and 1, and therefore the best estimate 
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ticians. All other mathematical developments given in the paper 
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which is quite convenient for numerical computations. In this 
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*&(to, k) = I = unit matrix (5) 

The following properties are immediate by the existence and 
uniqueness of solutions of (1): 

k) = 4>(«o, <i) for all to, t, (6) 

k) = 4>(/2, <i)«»(<i> k) for all to, U, h (7) 

If F = const, then the transition matrix can be represented by 
the well-known formula 

�� �

4>(t, k) = exp F(t - t0) = IF(< - fc)]'/*' ( 8 ) 
i = 0 

which is quite convenient for numerical computations. In this 
special case, one can also express analytically in terms of the 
eigenvalues of F, using either linear algebra [22] or standard 
transfer-function techniques [14]. 

In some eases, it is convenient to replace the right-hand side of 
(3) by a notation that focuses attention on how the state of the 
system "moves" in the state space as a function of time. Thus 
we write the left-hand side of (3) as 

x(0 = «!>(<; x, to; u) (9) 

Read: The state of the system (1) at time t, evolving from the 
initial state x = x(to) at time k under the action of a fixed forcing 
function u(t). For simplicity, we refer to <j> as the motion of the 
dynamical system 

4 Statement of Problem 
We shall be concerned with the continuous-time analog of 

Problem I of reference [11], which should be consulted for the 
physical motivation of the assumptions stated below. 

(Ai) The message is a random process x(t) generated by the 
model 

dx/dt = F(t)x + G(t)u(t) (10) 

The observed signal is 

z(t) = y (t) + v( t ) = H « ) x ( t ) + v(t ) ( i i ; 

The functions u(t), v(t) in (10-11) are independent random proc-
esses (white noise) with identically zero means and covariance 
matrices 

c o v [U(0, U(T)] = Q ( I ) - 8 ( 1 - T) 

cov [v(0, v(r)] = R(t)-5(t - T) for all t, r (12) 

cov [u(t), v(r)] = 0 

where 8 is the Dirac delta function, and Q(t), R(t) are symmetric, 
nonnegative definite matrices continuously differentiable in t. 

We introduce already here a restrictive assumption, which is 
needed for the ensuing theoretical developments: 

(A2) The matrix R(t) is positive definite for all I. Physically, 
this means that no component of the signal can be measured 
exactly. 

To determine the random process x(t) uniquely, it is necessary 

to add a further assumption. This may be done in two different 
ways: 

(A3) The dynamical system (10) has reached "steady-state" 
under the action of u(I), in other words, x(l) is the random func-
tion defined by 

x(l) = J' ^ 4>(t, r)G(r)u(r)dr (13) 

This formula is valid if the system (10) is uniformly asymp-
totically stable (for precise definition, valid also in the noncon-
stant case, see [21]). If, in addition, it is true that F, G, Q are 
constant, then x(i) is a stationary random process—this is one of 
the chief assumptions of the original Wiener theory. 

However, the requirement of asymptotic stability is incon-
venient in some cases. For instance, it is not satisfied in Example 
5, which is a useful model in some missile guidance problems. 
Moreover, the representation of random functions as generated 
by a linear dynamical system is already an appreciable restriction 
and one should try to avoid making any further assumptions. 
Hence we prefer to use: 

(A3') The measurement of i(t) starts at some fixed instant to 
of time (which may be — <°), at which time cov[x(to), x(io)] is 
known. 

Assumption (A3) is obviously a special case of (A / ) . Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 

The main object of the paper is to study the 
OPTIMAL ESTIMATION PROBLEM. Given known values 

of Z(T) in the time-interval k ^ r t, find an estimate x(ti|t) of 
x(ti) of the form 

*(<i|0 = A ( t „ r)z(r)dr (14) 

(where A is an n X p matrix whose elements are continuously 
differentiable in both arguments) with the properly that the expected 
squared error in estimating any linear function of the message is 
minimized: 

S[x*, x(ti) - x(t,|t)]2 = minimum for all x* (15) 

Remarks, (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 

6||x(fe) - x(t,|tf 

(b) In view of (Ai), it is clear that Sx(ti) = Sx(ti[t) = 0. 
Hence [x*, x(ti|t)] is the minimum variance linear unbiased 
estimate of the value of any costate x* at x(t\). 

(c) If Su(t) is unknown, we have a more difficult problem which 
will be considered in a future paper. 

(d) It may be recalled (see, e.g., [11]) that if u and v are 
gaussian, then so are also x and 1, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
other loss functions. 

(e) The representation of white noise in the form (12) is not 
rigorous, because of the use of delta "functions." But since the 
delta function occurs only in integrals, the difficulty is easily re-
moved as we shall show in a future paper addressed to mathema-
ticians. All other mathematical developments given in the paper 
are rigorous. 

The solution of the estimation problem under assumptions 
(Ai), (A2), (A3') is stated in Section 7 and proved in Section 8. 

5 The Dual Problem 
It will be useful to consider now the dual of the optimal estima-

tion problem which turns out to be the optimal regulator problem 
in the theory of control. 
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Introduction 

 
AN IMPORTANT class of theoretical and practical 

problems in communication and control is of a statistical nature. 
Such problems are: (i) Prediction of random signals; (ii) separa- 
tion of random signals from random noise; (iii) detection of 
signals of known form (pulses, sinusoids) in the presence of 
random noise. 

In his pioneering work, Wiener [1]3 showed that problems (i) 
and (ii) lead to the so-called Wiener-Hopf integral equation; he 
also gave a method (spectral factorization) for the solution of this 
integral equation in the practically important special case of 
stationary statistics and rational spectra. 

Many extensions and generalizations followed Wiener’s basic 
work. Zadeh and Ragazzini solved the finite-memory case [2]. 
Concurrently and independently of Bode and Shannon [3], they 
also gave a simplified method [2) of solution.  Booton discussed 
the nonstationary Wiener-Hopf equation [4]. These results are 
now in standard texts [5-6]. A somewhat different approach along 
these main lines has been given recently by Darlington [7]. For 
extensions to sampled signals, see, e.g., Franklin [8], Lees [9]. 
Another approach based on the eigenfunctions of the Wiener-
Hopf equation (which applies also to nonstationary problems 
whereas the preceding methods in general don’t), has been 
pioneered by Davis [10] and applied by many others, e.g., 
Shinbrot [11], Blum [12], Pugachev [13], Solodovnikov [14].  

In all these works, the objective is to obtain the specification of 
a linear dynamic system (Wiener filter) which accomplishes the 
prediction, separation, or detection of a random signal.4 

——— 
1 This research was supported in part by the U. S. Air Force Office of 

Scientific Research under Contract AF 49 (638)-382.  
2 7212 Bellona Ave.  
3 Numbers in brackets designate References at end of paper.  
4 Of course, in general these tasks may be done better by nonlinear 

filters. At present, however, little or nothing is known about how to obtain 
(both theoretically and practically) these nonlinear filters.  
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Manuscript received at ASME Headquarters, February 24, 1959. Paper 
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Present methods for solving the Wiener problem are subject to 

a number of limitations which seriously curtail their practical 
usefulness: 

(1) The optimal filter is specified by its impulse response. It is 
not a simple task to synthesize the filter from such data. 

(2) Numerical determination of the optimal impulse response is 
often quite involved and poorly suited to machine computation. 
The situation gets rapidly worse with increasing complexity of 
the problem. 

(3) Important generalizations (e.g., growing-memory filters, 
nonstationary prediction) require new derivations, frequently of 
considerable difficulty to the nonspecialist. 

(4) The mathematics of the derivations are not transparent. 
Fundamental assumptions and their consequences tend to be 
obscured. 

This paper introduces a new look at this whole assemblage of 
problems, sidestepping the difficulties just mentioned. The 
following are the highlights of the paper: 

(5) Optimal Estimates and Orthogonal Projections. The 
Wiener problem is approached from the point of view of condi- 
tional distributions and expectations. In this way, basic facts of 
the Wiener theory are quickly obtained; the scope of the results 
and the fundamental assumptions appear clearly. It is seen that all 
statistical calculations and results are based on first and second 
order averages; no other statistical data are needed. Thus 
difficulty (4) is eliminated. This method is well known in 
probability theory (see pp. 75–78 and 148–155 of Doob [15] and 
pp. 455–464 of Loève [16]) but has not yet been used extensively 
in engineering. 

(6) Models for Random Processes. Following, in particular, 
Bode and Shannon [3], arbitrary random signals are represented 
(up to second order average statistical properties) as the output of 
a linear dynamic system excited by independent or uncorrelated 
random signals (“white noise”). This is a standard trick in the 
engineering applications of the Wiener theory [2–7]. The 
approach taken here differs from the conventional one only in the 
way in which linear dynamic systems are described. We shall 
emphasize the concepts of state and state transition; in other 
words, linear systems will be specified by systems of first-order 
difference (or differential) equations. This point of view natural 

A New Approach to Linear Filtering  
and Prediction Problems1

 
 

The classical filtering and prediction problem is re-examined using the Bode-
Shannon representation of random processes and the “state transition” method of 
analysis of dynamic systems.  New results are: 

(1) The formulation and methods of solution of the problem apply without modifica- 
tion to stationary and nonstationary statistics and to growing-memory and infinite- 
memory filters.  

(2) A nonlinear difference (or differential) equation is derived for the covariance 
matrix of the optimal estimation error.  From the solution of this equation the co- 
efficients of the difference (or differential) equation of the optimal linear filter are ob- 
tained without further calculations. 

(3) The filtering problem is shown to be the dual of the noise-free regulator problem. 
The new method developed here is applied to two well-known problems, confirming 

and extending earlier results.  
The discussion is largely self-contained and proceeds from first principles; basic 

concepts of the theory of random processes are reviewed in the Appendix. 
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N e w R e s u l t s in Lin e a r F i l t e r i ng a nd 
Pr e d ic t i o n Th e ory1 

A nonlinear differential equation of the Riccati type is derived for the covariance 
matrix of the optimal filtering error. The solution of this "variance equation" com-
pletely specifies the optimal filter for either finite or infinite smoothing intervals and 
stationary or nonstationary statistics. 

The variance equation is closely related to the Hamiltonian (canonical) differential 
equations of the calculus of variations. Analytic solutions are available in some cases. 
The significance of the variance equation is illustrated by examples which duplicate, 
simplify, or extend earlier results in this field. 

The Duality Principle relating stochastic estimation and deterministic control 
problems plays an important role in the proof of theoretical results. In several examples, 
the estimation problem and its dual are discussed side-by-side. 

Properties of the variance equation are of great interest in the theory of adaptive 
systems. Some aspects of this are considered briefly. 

1 Introduction 

A T PRESENT, a nonspecialist might well regard the 
Wiener-Kolmogorov theory of filtering and prediction [1, 2]3 as 
"classical' —in short, a field where the techniques are well 
established and only minor improvements and generalizations 
can be expected. 

That this is not really so can be seen convincingly from recent 
results of Shinbrot [3], Stceg [4], Pugachev [5, 6], and Parzen [7]. 
Using a variety of time-domain methods, these investigators have 
solved some long-stauding problems in nonstationary filtering and 
prediction theory. We present here a unified account of our own 
independent researches during the past two years (which overlap 
with much of the work [3-71 just mentioned), as well as numerous 
new results. We, too, use time-domain methods, and obtain 
major improvements and generalizations of the conventional 
Wiener theory. In particular, our methods apply without 
modification to multivariate problems. 

The following is the historical background of this paper. 
In an extension of the standard Wiener filtering problem, Follin 

[8] obtained relationships between time-varying gains and error 
variances for a given circuit configuration. Later, Hanson [9] 
proved that Follin's circuit configuration was actually optimal 
for the assumed statistics; moreover, he showed that the differen-
tial equations for the error variance (first obtained by Follin) 
follow rigorously from the Wiener-Hopf equation. These results 
were then generalized by Bucy [10], who found explicit rela-
tionships between the optimal weighting functions and the error 
variances; he also gave a rigorous derivation of the variance 
equations and those of the optimal filter for a wide class of non-
stationary signal and noise statistics. 

Independently of the work just mentioned, Kalman [11] gave 

1 This research was partially supported by the United States Air 
Force under Contracts AF 49(638)-382 and AF 33(616)-6952 and by 
the Bureau of Naval Weapons under Contract NOrd-73861. 
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3 Numbers in brackets designate References at the end of paper. 
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September 7-9, I960. Manuscript received at ASME Headquarters, 
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a new approach to the standard filtering and prediction problem. 
The novelty consisted in combining two well-known ideas: 

(i) the "state-transition" method of describing dynamical sys-
tems [12-14], and 

(ii) linear filtering regarded as orthogonal projection in Hilbert 
space [15, pp. 150-155]. 

As an important by-product, this approach yielded the Duality 
Principle [11, 16] which provides a link between (stochastic) 
filtering theory and (deterministic) control theory. Because of 
the duality, results on the optimal design of linear control systems 
[13, 16, 17] are directly applicable to the Wiener problem. Dual-
ity plays an important role in this paper also. 

When the authors became aware of each other's work, it was 
soon realized that the principal conclusion of both investigations 
was identical, in spite of the difference in methods: 

Rather than to attack the Wiener-Hopf integral equation directly, 
it is better to convert it into a nonlinear differential equation, whose 
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Fig. 9 General block diagram of optimal filter 

This problem was studied by Hanson [9] and Bucy [25, 26]. 
The dual problem is very similar to Examples 3 and 4. 

7 Summary of Results: Mathematics 
Here we present the main results of the paper in precise mathe-

matical terms. At the present stage of our understanding of the 
problem, the rigorous proof of these facts is quite complicated, 
requiring advanced and unconventional methods; they are to be 
found in Sections 8-10. After reading this section, one may pass 
without loss of continuity to Section 11 which contains the solu-
tions of the examples. 

(1) Canonical form of the optimal filter. The optimal estimate 
x(i|0 is generated by a linear dynamical system of the form 

dx(t\t)/dt = F(i)*(«|0 + K(0 i« |<) 

z(l|<) = z(0 - H («8« |0 

The initial state x(«<,|fo,) of (I) is zero. 

For optimal extrapolation, we add the relation 

x«,!<) = ®(fc, 0 * « | 0 ( k ^ t ) (V) 

No similarly simple formula is known at present for interpolation 
(k < <)• 

The block diagram of (I) and (V) is shown in Fig. 9. The 
variables appearing in this diagram are vectors and the "boxes" 
represent matrices operating on vectors. Otherwise (except for 
the noncommutativity of matrix multiplication) such generalized 
block diagrams are subject to the same rules as ordinary block 

diagrams. The fat lines indicating direction of signal flow serve 
as a reminder that we are dealing with multiple rather than 
single signals. 

The optimal filter (I) is a feedback system. It is obtained by 
taking a copy of the model of the message process (omitting the 
constraint at the input), forming the error signal z(<|i) and feed-
ing the error forward with a gain K(<). Thus the specification of 
the optimal filter is equivalent to the computation of the optimal 
time-varying gains «(()• This result is general and does not de-
pend on constancy of the model. 
(2) Canonical form for the dynamical system governing the 

optimal error. Let 

i(t\l) = x(i) - x(t|0 (22) 

Except for the way in which the excitations enter the optimal 
error, x((|0 is governed by the same dynamical Bystem as x(t\t): 

dx(t\l)/di = F(<)x(«|0 + G(i)u(i) - K(0[v«) 
+ H«)x«l<)] (II) 

See Fig. 10. 
(3) Optimal gain. Let us introduce the abbreviation: 

P(0 = cov[x«|<), x(«|i)l (23) 

Then it can be shown that 

K(i) = P(<)H '(i)R-»(0 (III) 

(4) Variance equation. The only remaining unknown is P(i). 
It can be shown that P(i) must be a solution of the matrix dif-
ferential equation 

dP/dt = F(«)P + PF'(<) - PH'(«)R-1(«)H(0P 
+ G « Q ( 0 G ' ( 0 (IV) 
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This is the variance equation; it is a system of n(n + l ) /2 4 non-
linear differential equations of the first order, and is of the Riccati 
type well known in the calculus of variations [17, 18]. 

(5) Existence of solutions of the variance equation. Given any 
fixed initial time to and a nonnegative definite matrix Po, (IV) has 
a unique solution 

P(t) = n ( t ; P0, U>) (24) 

defined for all |t — to| sufficiently small, which takes on the value 
P(to) = Po at t = <o- This follows at once from the fact that (IV) 
satisfies a Lipschitz condition [21]. 

Since (IV) is nonlinear, we cannot of course conclude without 
further investigation that a solution P(t) exists for all t [21]. By 
taking into account the problem from which (IV) was derived, 
however, it can be shown that P(t) in (24) is defined for all t ^ to. 

These results can be summarized by the following theorem, 
which is the analogue of Theorem 3 of [11] and is proved in 
Section 8: 

THEOREM 1. Under Assumptions (A,), (A2), (A,'), the 
solution of the optimal estimation problem with to> — °> is given by 
relations (I-V). The solution P(t) of (IV) is uniquely determined 
for all t Zz to by the specification of 

Po = cov[x(to), x(to)]; 

knowledge of P(t) in turn determines the optimal gain K(<)- The 
initial state of the optimal filter is 0 . 

(6) Variance of the estimate of a coslate. From (23) we have 
immediately the following formula for (15): 

Six*, x « | t ) l ! = ||x*||V(i) (25) 

(7) Analytic solution of the variance equation. Because of the 
close relationship between the Riccati equation and the calculus 
of variations, a closed-form solution of sorts is available for (IV). 
The easiest way of obtaining it is as follows [17]: 

Introduce the quadratic HamiUonian function 

3C(x, w, I) = - ( ' A ) ! ! G ' « ) X | | 2 Q W 

- w'F'(0x + ( ' / O l l H t O w l l V w (26) 

and consider the associated canonical differential equations 

dx/dt = aae/dw5 = - F ' ( 0 x + H ' (0R- ' ( 0H(0w ] 
\ (27) 

dw/dt dUC/dx = G(i)Q(t)G'(«)x + F(t)w J 

We denote the transition matrix of (27) by 

4 This is the number of distinct elements of the symmetric matrix 
P(0. 

• The notation &3C/3w means the gradient of the scalar 3C with 
respect to the vector w. 

In Section 10 we shall prove 
THEOREM 2. The solution of (IV) for arbitrary nonnegative 

definite, symmetric Po and all t ^ to can be represented by the formula 

n ( t ; Po,���� = [ 0 m « ,� ����� ©« (« , MPo] ' [ @ n « ,� ����
+ ©.*(<, <o)Po] - 1 (29) 

Unless all matrices occurring in (27) are constant, this result 
simply replaces one difficult problem by another of similar dif-
ficulty, since only in the rarest cases can @(t, U) be expressed in 
analytic form. Something has been accomplished, however, since 
we have shown that the solution of nonconstant estimation problems 
involves precisely the same analytic difficulties as the solution of linear 
differential equations with variable coefficients. 

(8) Existence of steady-state solution. If the time-interval over 
which data are available is infinite, in other words, if to = — 
Theorem 1 is not applicable without some further restriction. 

For instance, if H(i) = 0, the variance of x is the same as the 
variance of x; if the model (10-11) is unstable, then x(t) defined 
by (13) does not exist and the estimation problem is meaningless. 

The following theorem, proved in Section 9, gives two sufficient 
conditions for the steady-state estimation problem to be meaning-
ful. The first is the one assumed at the very beginning in the 
conventional Wiener theory. The second condition, which we in-
troduce here for the first time, is much weaker and more "natural" 
than the first; moreover, it is almost a necessary condition as well. 

THEOREM 3. Denote the solutions of (IV) as in (24). Then 
the limit 

lim I I ( i ; 0, to) = P(t) (30) 
U—>— ™ 

exists for all t and is a solution of (IV) if either 
(At) the model (10-11) is uniformly asymptotically stable; or 
( A / ) the model (10-11) is "completely observable" [17], that is, 

for all t there is some to(t) < t such that the matrix 

M(to, t) = f ' • ' ( r , <)H'(r)H(r)«&(r, t)dr (31) 

is positive definite. (See [21] for the definition of uniform asymptotic 
stability.) 

Remarks, (g) P(f) is the covariance matrix of the optimal error 
corresponding to the very special situation in which (i) an arbi-
trarily long record of past measurements is available, and (ii) the 
initial state x(<o) was known exactly. When all matrices in 
(10-12) are constant, then so is also P—this is just the classical 
Wiener problem. In the constant case, P is an equilibrium 
state of (IV) (i.e., for this choice of P, the right-hand side of (IV) 
is zero). In general, P(I) should be regarded as a moving equi-
librium point of (IV), see Theorem 4 below. 

(h) The matrix M(<c, t) is well known in mathematical statistics. 
It is the information matrix in the sense of R. A. Fisher [20] 
corresponding to the special estimation problem when (i) u(t) = 0 
and (ii) v(t) = gaussian with unit covariance matrix. In this 
case, the variance of any unbiased estimator p,(t) of [x,* x(t)] 
satisfies the well-known Cramer-Rao inequality [20] 
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This	  is	  a	  very	  important	  ;	  note	  that	  it	  	  provides	  
a	  link	  to	  the	  adjoint-‐method	  employed	  in	  
meteorology	  (e.g.,	  Talagrand	  &	  Cour9er,	  1987).	  



Genealogy	  of	  Data	  Assimila9on	  

Based	  on	  Lewis,	  Lakshmivarahan,	  and	  Dhall	  (2006;	  Fig.	  4.6.1)	  
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Two	  Real-‐Life	  Applica9ons	  
	  
	  	  	  	  	  	  	  The	  Apollo	  Missions	  
	  	  	  	  Predic9ng	  the	  Weather	  



The	  Apollo	  Missions	  

Digression	  …	  

The	  First	  Real-‐Life	  Applica9on	  of	  the	  KF	  



Discovery	  of	  the	  Kalman	  Filter	  as	  a	  Prac9cal	  Tool	  for	  
Aerospace	  and	  Industry	  	  

McGee	  &	  Schmidt	  (1985)	  

In	  1985	  McGee	  &	  Schmidt	  published	  a	  NASA	  Tech	  Memo	  telling	  the	  story	  of	  how	  
“the	  Kalman	  filter	  first	  applica9on	  was	  made	  at	  NASA	  Ames	  during	  feasibility	  	  
studies	  for	  circumlunar	  naviga9on	  and	  control	  of	  the	  Apollo	  space	  capsule”.	  
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From	  Schmidt	  &	  McLean	  (1962)	  

The	  ar9cle	  describes	  how:	  
	  
-‐  The	  need	  for	  something	  like	  the	  Kalman	  filter	  arose	  
-‐  Extensions	  required	  to	  Kalman’s	  work	  for	  use	  in	  real-‐life	  problems	  
-‐  Various	  	  stability	  tricks	  were	  designed	  and	  employed	  
-‐  The	  need	  for	  a	  	  stable	  reformula9on	  	  leading	  to	  the	  square-‐root	  KF	  
-‐  Various	  efficient	  formula9ons	  derived	  to	  fit	  the	  compu9ng	  
	  	  	  	  	  	  real-‐9me-‐applica9on	  constraints	  	  
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VISIBILITY CONTOURS FOR THE APOLLO 85-FT ANTENNAS 
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VISIBILITY CONTOURS FOR THE APOLLO 85-FT ANTENNAS From	  F.	  O.	  Vonbun,	  (1966)	  

NASA	  worldwide	  tracking	  network	  (c.	  1965)	  	  

Source	  hnp://history.nasa.gov/SP-‐4002/p2b.htm	  



Discovery	  of	  the	  Kalman	  Filter	  as	  a	  Prac9cal	  Tool	  for	  
Aerospace	  and	  Industry	  	  

McGee	  &	  Schmidt	  (1985)	  

Support	  for	  the	  Apollo	  Mission	  (from	  mid-‐1962	  to	  mid-‐1964)	  
Three	  areas	  of	  study	  were	  the	  focus:	  	  
	  	  (1)	  effect	  of	  modeling	  errors	  and	  subop9mal	  space	  vehicle	  trajectory.	  
	  	  (2)	  effect	  of	  short-‐word	  length	  in	  the	  airborne	  computers.	  
	  	  (3)	  effect	  of	  combining	  ground-‐base	  and	  on-‐board	  observa9onal	  data.	  	  	  

The	  first	  stability	  issues	  with	  the	  Kalman-‐Schmidt	  filter	  were	  encountered	  while	  studying	  (3).	  
Earlier	  inves9ga9ons	  apparently	  involved	  systems	  that	  were	  less	  sensi9ve	  to	  nonlineari9es.	  

Part	  of	  the	  stability	  issue	  was	  anributed	  to	  computer	  round-‐off	  problems.	  Ini9al	  anempts	  
to	  address	  the	  issue	  involved	  (the	  now	  familiar)	  forcing	  P	  to	  be	  symmetric	  by:	  	  
	  	  (a)	  using	  only	  its	  upper	  (or	  lower)	  triangle	  to	  form	  a	  symmetric	  matrix.	  
	  	  (b)	  averaging	  its	  off-‐diagonal	  terms.	  
	  	  (c)	  applying	  (b),	  then	  compu9ng	  correla9ons	  coeffs,	  if	  any	  >	  1,	  stop.	  
	  	  (d)	  adding	  a	  small	  number	  to	  the	  diagonal	  of	  P	  aver	  measurement	  and	  9me	  update	  steps.	  

About	  this	  9me	  is	  when	  Joseph’s	  update	  formula	  came	  into	  play.	  	  
During	  this	  research	  they	  learned:	  
	  	  (1)	  how	  to	  handle	  uncertain9es	  and	  biases	  
	  	  (2)	  when	  the	  error	  cov	  P	  is	  too-‐op9mis9c	  it	  mis-‐represents	  errors,	  leading	  to	  filter	  divergence	  
	  	  (3)	  ground-‐base	  radar	  obs	  were	  more	  effec9ve,	  with	  onboard	  correc9ons	  only	  used	  as	  backup	  



Source	  hnp://en.wikipedia.org/wiki/Punched_card	  

Source	  hnp://www-‐03.ibm.com/ibm/history/exhibits/mainframe/mainframe_2423PH704.html	  

Ini5al	  Kalman	  filter	  studies	  used	  
IBM	  704	  Data	  Processing	  System	  

Source	  hnp://www-‐03.ibm.com/ibm/history/exhibits/vintage/vintage_4506VV4002.html	  
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Back	  in	  the	  days	  …	   -‐  Computer	  programs	  were	  “typed”	  in	  punch	  cards	  
-‐  Debugging	  was	  tough!	  
-‐  On	  the	  IBM	  704	  (at	  Ames)	  matrix	  double	  indexing	  
	  	  	  	  	  was	  slow;	  programs	  had	  to	  be	  rewrinen	  with	  single	  
	  	  	  	  	  indexing.	  
-‐  IBM	  704:	  36-‐bit	  arithme9c;	  Apollo	  onboard:	  15-‐bit	  

Apollo	  11	  Mission	  Control	  
IBM’s	  Real-‐Time	  Computer	  	  
Complex	  at	  NASA,	  Houston	  

hnp://www-‐03.ibm.com/ibm/history/ibm100/us/en/icons/apollo/breakthroughs/	  
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Source	  hnp://history.nasa.gov/SP-‐4002/p1b.htm	  

Applica9on	  of	  The	  Filter	  to	  the	  Agena	  Program	  (c.	  1961)	  

Gemini	  Docking	  

Purpose:	  validate	  the	  Agena	  upper	  stage	  rendezvous	  and	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  docking	  during	  Project	  Gemini.	  
Observa5ons:	  downrange	  sta9ons	  &	  in-‐flight	  telemetry.	  
Model:	  equa9ons	  of	  mo9on	  of	  the	  vehicle	  predic9ng	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  posi9on	  and	  velocity.	  
Es5mator:	  measurement	  biases,	  loca9on,	  coefficients	  of	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  propulsion	  model	  for	  the	  thrust	  of	  Agena	  upper	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  stage.	  
Resul5ng	  techniques	  following	  from	  study:	  
	  	  -‐	  Quality	  control:	  data-‐rejected	  based	  on	  size	  of	  residual.	  
	  	  -‐	  KF	  used	  as	  data	  compression	  algorithm.	  
	  	  -‐	  Effect	  of	  nonlineari9es	  handled	  with	  backward	  integra9on	  
	  	  	  	  	  and	  forward	  filtering.	  	  	  
	  	  -‐	  KF	  used	  to	  es9mate	  parameters	  in	  measurement	  and	  model.	  
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McGee	  &	  Schmidt	  (1985)	  

The	  square-‐root	  filter	  

S9ll	  having	  stability	  issues	  Schmidt,	  knowing	  about	  the	  recently	  developed	  algorithm	  by	  PoLer,	  	  
implemented	  the	  first	  square-‐root	  filtering	  for	  real	  on-‐board	  aircrav	  applica9ons.	  Poner’s	  	  
procedure	  uses	  a	  Cholesky	  factoriza9on	  of	  the	  error	  covariance	  matrix,	  which	  by	  construc9on	  	  
maintains	  posi9veness,	  and	  results	  in	  a	  more	  stable	  implementa9on	  then	  the	  more	  direct	  	  
Extended	  KF..	  	  

Schmidt	  and	  his	  group	  con9nued	  to	  applied	  the	  extended	  KF	  to	  various	  naviga9on	  problems:	  
	  	  	  	  	  	  (a)	  the	  development	  of	  the	  C-‐5A	  aircrav	  naviga9on	  system	  
	  	  	  	  	  	  (b)	  flight	  test	  of	  the	  RAINPAL	  system	  for	  approach	  and	  landing	  	  
	  

The	  group	  of	  Eldon	  Hall	  implemented	  Poner’s	  algorithm	  in	  the	  Apollo	  Guidance	  Computer.	  

Poner’s	  original	  algorithm	  neglects	  model	  error.	  Various	  generaliza9ons	  become	  available	  in	  	  
the	  late	  60s	  and	  during	  the	  70s	  that	  by	  then	  took	  into	  account	  factoriza9ons	  the	  model	  error	  	  
covariance	  –	  amount	  the	  great	  contributors	  where	  Carlson,	  Bierman,	  &	  Thornton.	  The	  most	  	  
reliable	  and	  computa9onally	  efficient	  schemes	  are	  based	  on	  a	  U-‐D	  decomposi5on	  of	  the	  	  
error	  covariance	  and	  a	  modified	  Gram-‐Schmidt	  orthogonaliza5on.	  	  



Predic9ng	  the	  Weather	  

From	  First	  Principles	  to	  the	  KF	  for	  NWP	  



Meteorology	  &	  Weather	  Forecas9ng	  

There	  is	  a	  number	  of	  ar9cles	  that	  
tell	  the	  history	  of	  meteorology,	  
weather	  forecas9ng,	  &	  of	  those	  	  
who	  pioneered	  the	  field.	  	  

Mathema3cs	  Today,	  1978,	  L.	  A.	  Steen,	  Ed.127-‐152	  



From	  Thompson;	  in	  Mathema3cs	  Today	  1978	  

Meteorology	  &	  Weather	  Forecas9ng	  

Why	  did	  it	  take	  so	  long	  for	  meteorology	  
to	  become	  a	  science?	  

Note:	  thought	  the	  system	  of	  equa9ons	  becomes	  formally	  complete	  with	  six	  equa9ons,	  	  for	  it	  to	  describe	  a	  meaningful	  	  
	  	  	  	  	  	  	  	  	  	  	  atmosphere,	  it	  also	  needs	  a	  seventh	  eq.	  provided	  by	  the	  Second	  Law	  of	  Thermodynamics	  –	  leading	  to	  inclusion	  of	  	  
	  	  	  	  	  	  	  	  	  	  	  water-‐vapor.	  



Meteorology	  &	  Weather	  Forecas9ng	  

Vilhelm	  Bjerknes	  
From	  www.uib.no	  

“If	  it	  is	  true,	  as	  every	  scien3st	  believes,	  that	  atmospheric	  states	  
develop	  from	  the	  preceding	  ones	  according	  to	  physical	  laws,	  	  
then	  it	  is	  apparent	  that	  the	  necessary	  and	  sufficient	  condi3ons	  
for	  the	  ra3onal	  solu3on	  of	  forecas3ng	  problems	  are	  the	  following:	  
	  
1.  A	  sufficiently	  accurate	  knowledge	  of	  the	  state	  of	  the	  	  
atmosphere	  at	  the	  ini3al	  3me.	  
2.  A	  sufficiently	  accurate	  knowledge	  of	  the	  laws	  according	  to	  	  
which	  one	  state	  of	  the	  atmosphere	  develops	  from	  another.“	  

Bjerknes	  (1904;	  	  Meteor.	  Zeitschrij)	  

Lewis	  F.	  Richardson	  
From	  www.wmo.int	  

“Perhaps	  some	  day	  in	  the	  dim	  future	  it	  will	  be	  possible	  
to	  advance	  the	  computa3ons	  faster	  than	  the	  weather	  
advances	  and	  at	  a	  cost	  less	  than	  the	  saving	  to	  mankind	  
due	  to	  the	  informa3on	  gained.	  But	  that	  is	  a	  dream.”	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Lewis	  Fry	  Richardson,	  1922.	  	  	  

Richarson’s	  checkerboard	  grid	  
with	  p	  and	  wind	  staggered	  at	  
shaded	  and	  clear	  boxes.	  



Objec9ve	  Analysis	  and	  
The	  Varia9onal	  Principle	  (c.	  1950s)	  

Yoshikazu	  (“Yoshi”)	  Sasaki	  

Subjec9ve	  (lev)	  and	  two	  objec9ve	  analyses	  of	  700	  mb	  height	  at	  1500	  GCT	  
on	  25	  March	  1947;	  From	  Panofsky	  (1949).	  	  

The	  objec9ve	  analysis	  amounts	  
to	  a	  third-‐order	  polynomial	  fit	  

It	  was	  quickly	  realized	  that	  simple	  objec9ve	  analysis	  techniques	  would	  
have	  to	  be	  made	  consistent	  with	  the	  physical	  constrains	  underlying	  the	  
meteorological	  variables.	  Sasaki	  proposed	  using	  the	  varia9onal	  principle	  
to	  accomplish	  consistency.	  
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When the fi's are not independent, equation 
(2) furnishes a relation between observed and 
modified values of the elements. 

 In order to obtain a solution, a second 
relation must exist between pairs of fi values. 
In the case where the fi values are related 
this condition may be expressed generally as

where Fj represents j functional relations 
between the fi values. Some of these function-
al relations are given by the quasi-geostrophic 
wind equation, the thermal wind relation, the 
balance equation and the tendency equation. 

 Equations (2) and (3) form the basis for 
determining the modified values of the elements 
in a volume considered. The values calcu-
lated in this way depend on the functional 
form of equation (3), which must be selected 
basing on reasonable physical considerations 
of the problem at hand. Two such cases are 
considered here. In Case I the functional re-
lations given by equations (3) are in the form 
of the quasi-geostrophic and thermal wind 
equations. In Case II the functional relations 
are the balance equation and the conditions 
of non-divergence, (div v=0, div v=0), which 
corresponds to an equivalent barotropic atmos-
phere.

3. Case I. Quasi-geostrophic and thermal 

   wind condition 

 It is generally accepted that the flow in 

large scale synoptic disturbances at upper 

levels in high and middle latitudes is quasi-

geostrophic, to a good approximation. The 
discussion in this section relates to a method 

of objectively determining the modified pat-

terns of wind, temperature and pressure which 

satisfy quasi-geostrophic and thermal wind 

conditions. 

 Consider the observed quantities, foi, and 

the modified values, fi, referred to a constant 

pressure surface, p, as follows 

  u0, u-eastward wind component 

  v0, v-northward wind component 

  ƒÓ0 

,ƒÓ-geopotential of a constant pressure 
       surface 

 T0, T-absolute air temperature 

The modified values, u, v, ƒÓ, T, must satisfy 

the following relations.

where R is the gas constant for air, f re-
presents the Coriolis parameter, and the e-
quations are in the x, y, p coordinate system. 

 In the above set of equations, (4b) may be 
replaced by the hydrostatic equilibrium re-
lation

 For convenience' sake let us consider the(x, y, 
p*) coordinate system in which p* is defined by

where P is the pressure at some reference 
level. Equations (4 a, b, c) then may be ex-
pressed as

It is not necessary that the observed values 
satisfy equations (5 a, b, c). 

 Let us now define the deviation or difference 
between observed and modified values by the 
primed quantities.

Substitution of (6) in equations (5 a, b, c) gives

which express the deviations as functions of 

observed quantities. If the sum of the squares 

of these deviations are expressed as 

          ƒÃ2•ßƒ¿12u'2+ƒ¿12v'2+ƒ¿2ƒÓ'2+ƒ¿32T'2 (8) 

where ƒ¿i's are weighting factors. The space 

integral of equation (8) may be given by

-2-
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Governing	  QG	  and	  	  
thermal	  wind	  eqs.:	  

Devia9ons	  from	  	  
observa9ons:	  
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Corresponding	  
error	  equa9ons:	  

An Objective Analysis Based on the Variational Method 79

where V is a volume in the (x, y, p*) space. 

In order to obtain modified values of the 

parameters objectively, we require I to be a 
minimum. Based on techniques of the calculus 

of variations, therefore, 

             ƒÂ I=0 (10).

Substituting equations (7), (8), and (9) into 

equation (10), and simplifying through inte-

grating by parts assuming that the variations 
vanish at the boundary of V (or ƒÂƒÓ'=0 at 

the boundary), we have

The terms on the right of equation (13a) may 

be evaluated directly from observed data, 

using standard techniques. If their sum is 

zero, the modified values are equal to the 

observed quantities. These observed values 

then may be used in numerical prediction 

routines which are based on the quasi-geo-

strophic assumption. When the sum of these 

terms is not zero, solution of equation (13a) 

gives values of the deviation of geopotential, 
ƒÓ' . The modified value,ƒÓ, may be obtained 

from equation (6). This modified value may 

also be used in numerical prediction techniques 

based on the quasi-geostrophic assumption. 

 For purposes of discussion equation (12a) 

may be written in the form,

Since ƒÂƒÓ'is arbitrary, equation (11) is valid 

only when the quantity within the brackets 

is equal to zero. This may be expressed in 

a simplified form as

where

is the relative vorticity of the observed wind 
field, and the three dimensional Laplacian 
operator is given by

Equation (12a) shows the importance of vorti-
city in this method of objective analysis. 

 For the two dimensional case, equation (12a) 
reduces to

where

The first term in brackets on the right hand 

side of (12a') is the same as in the two di-

mensional case. The second term in brackets 

represents the difference between the observed 

temperature and the thickness-temperature. 

Equation (12a') indicates the importance of 

vorticity and thickness in the objective method 

considered here. In numerical prediction 

techniques based on the quasi-geostrophic and 

thermal wind assumptions it is felt that the 

initial map should be constructed objectively 

by a method also based on the same assump-

tions. It appears logical to impose the same 

constraints on the initial conditions as are. 

used by the prognostic routine in an effort 

to be consistent throughout the problem. 

 Values of observed quantities in equation 

(12a') may be obtained directly from normally 
observed data. The thickness-temperature 

may be evaluated using methods of finite 

differences. In order to estimate the values 

of the ratios involving ƒ¿1, ƒ¿2 , ƒ¿3 , and to 

demonstrate the use of the above methods, 

two simple examples will be considered. 

 Example 1. Consider the conditions given 

by

and

where U, V, A, f and ƒ³ are constants; and
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where V is a volume in the (x, y, p*) space. 

In order to obtain modified values of the 

parameters objectively, we require I to be a 
minimum. Based on techniques of the calculus 

of variations, therefore, 

             ƒÂ I=0 (10).

Substituting equations (7), (8), and (9) into 

equation (10), and simplifying through inte-

grating by parts assuming that the variations 
vanish at the boundary of V (or ƒÂƒÓ'=0 at 

the boundary), we have

The terms on the right of equation (13a) may 

be evaluated directly from observed data, 

using standard techniques. If their sum is 

zero, the modified values are equal to the 

observed quantities. These observed values 

then may be used in numerical prediction 

routines which are based on the quasi-geo-

strophic assumption. When the sum of these 

terms is not zero, solution of equation (13a) 

gives values of the deviation of geopotential, 
ƒÓ' . The modified value,ƒÓ, may be obtained 

from equation (6). This modified value may 
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When the fi's are not independent, equation 
(2) furnishes a relation between observed and 
modified values of the elements. 

 In order to obtain a solution, a second 
relation must exist between pairs of fi values. 
In the case where the fi values are related 
this condition may be expressed generally as

where Fj represents j functional relations 
between the fi values. Some of these function-
al relations are given by the quasi-geostrophic 
wind equation, the thermal wind relation, the 
balance equation and the tendency equation. 

 Equations (2) and (3) form the basis for 
determining the modified values of the elements 
in a volume considered. The values calcu-
lated in this way depend on the functional 
form of equation (3), which must be selected 
basing on reasonable physical considerations 
of the problem at hand. Two such cases are 
considered here. In Case I the functional re-
lations given by equations (3) are in the form 
of the quasi-geostrophic and thermal wind 
equations. In Case II the functional relations 
are the balance equation and the conditions 
of non-divergence, (div v=0, div v=0), which 
corresponds to an equivalent barotropic atmos-
phere.

3. Case I. Quasi-geostrophic and thermal 

   wind condition 

 It is generally accepted that the flow in 

large scale synoptic disturbances at upper 

levels in high and middle latitudes is quasi-

geostrophic, to a good approximation. The 
discussion in this section relates to a method 

of objectively determining the modified pat-

terns of wind, temperature and pressure which 

satisfy quasi-geostrophic and thermal wind 

conditions. 

 Consider the observed quantities, foi, and 

the modified values, fi, referred to a constant 

pressure surface, p, as follows 

  u0, u-eastward wind component 

  v0, v-northward wind component 

  ƒÓ0 

,ƒÓ-geopotential of a constant pressure 
       surface 

 T0, T-absolute air temperature 

The modified values, u, v, ƒÓ, T, must satisfy 

the following relations.

where R is the gas constant for air, f re-
presents the Coriolis parameter, and the e-
quations are in the x, y, p coordinate system. 

 In the above set of equations, (4b) may be 
replaced by the hydrostatic equilibrium re-
lation

 For convenience' sake let us consider the(x, y, 
p*) coordinate system in which p* is defined by

where P is the pressure at some reference 
level. Equations (4 a, b, c) then may be ex-
pressed as

It is not necessary that the observed values 
satisfy equations (5 a, b, c). 

 Let us now define the deviation or difference 
between observed and modified values by the 
primed quantities.

Substitution of (6) in equations (5 a, b, c) gives

which express the deviations as functions of 

observed quantities. If the sum of the squares 

of these deviations are expressed as 

          ƒÃ2•ßƒ¿12u'2+ƒ¿12v'2+ƒ¿2ƒÓ'2+ƒ¿32T'2 (8) 

where ƒ¿i's are weighting factors. The space 

integral of equation (8) may be given by
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The	  total	  quadra9c	  error	  
in	  the	  integrand:	  

Remaining	  difficul9es	  recognized:	  
•  Extrapola9on	  beyond	  area	  
	  	  	  	  	  	  of	  available	  data.	  
•  Specifica9on	  of	  weights	  From	  Sasaki	  (1958)	  

Many	  contributed	  to	  objec9ve	  	  
Analysis:	  Cressman,	  Charney,	  	  
Platzman,	  Smagorinsky,	  others.	  



Discovery	  of	  the	  Kalman	  Filter	  as	  a	  Prac9cal	  Tool	  for	  
Numerical	  Weather	  Predic9on	  

The	  earliest	  men9on	  of	  the	  Kalman	  filter	  as	  a	  possible	  approach	  to	  ini9alize	  NWP	  models	  is	  
found	  in	  a	  publica9on	  in	  the	  Journal	  of	  Atmospheric	  Sciences,	  	  by	  Richard	  H.	  Jones,	  in	  1965.	  

Computa5onal	  complexity	  kept	  most	  from	  looking	  into	  the	  KF	  for	  real-‐9me	  NWP	  applica9ons.	  	  	  

It	  wasn’t	  un9l	  the	  early	  1980s	  that	  M.	  Ghil,	  S.	  E.	  Cohn,	  &	  D.	  P.	  Dee	  started	  looking	  at	  the	  
problem	  and	  studying	  the	  KF	  proper9es	  for	  hyperbolic	  PDEs	  (associated	  with	  NWP).	  	  	  	  

Though	  works	  on	  KF	  for	  NWP	  started	  appearing	  more	  oven,	  it	  wasn’t	  un9l	  1994	  with	  Geir	  
Evensen’s	  ensemble	  Kalman	  filter	  that	  the	  feasibility	  of	  using	  the	  filter	  for	  real-‐9me	  
weather	  applica9ons	  started	  sinking	  in.	  

Since	  then,	  the	  literature	  on	  Kalman	  filtering	  related	  to	  NWP	  (and	  other	  Earth	  Sciences	  
applica9ons)	  has	  exploded.	  	  Many	  weather	  centers	  now	  have	  some	  version	  of	  an	  
ensemble-‐based	  data	  assimila9on	  procedure	  implemented;	  some	  of	  these	  being	  EnKF’s.	  

Most	  interes9ngly,	  many	  of	  the	  EnKF’s	  fit	  under	  the	  banner	  of	  Square-‐Root	  Kalman	  Filters.	  
So,	  in	  some	  sense,	  it	  seems	  we	  have	  come	  all	  the	  way	  around	  to	  conclude	  (for	  somewhat	  
slightly	  different	  reasons),	  that	  Square-‐Root	  filters	  are	  bener	  suited	  for	  prac9cal	  applica9ons.	  



The	  NASA	  GMAO	  Varia9onal-‐Ensemble	  Hybrid	  	  
Data	  Assimila9on	  System	  	  



In	  the	  process	  of	  preparing	  this	  presenta9on	  I	  came	  across	  an	  ar9cle	  not	  too	  dissimilar	  
from	  that	  of	  McGee	  &	  Schmidt	  (1985).	  This	  is	  the	  ar9cle	  of	  Grewal	  &	  Andrews	  (2010)	  which	  
also	  provides	  a	  nice	  review	  of	  the	  use	  of	  Kalman	  filtering	  in	  Aerospace.	  It	  seems	  unfortunate,	  
though,	  these	  authors	  are	  not	  aware	  of	  the	  earlier	  review	  of	  McGee	  &	  Schmidt.	  

Closing	  Remarks	  

In	  our	  Earth	  Science	  applica9ons,	  the	  square-‐root	  filter	  formula9on	  has	  become	  rather	  	  
important	  as	  it	  is	  behind	  the	  ensemble-‐based	  formula9ons	  for	  the	  filtering	  (and	  smoothing)	  
problem(s).	  

Just	  in	  our	  field	  of	  interest,	  the	  amount	  of	  literature	  on	  filtering	  and	  smoothing	  has	  explored.	  
it	  is	  becoming	  very	  difficult	  to	  know	  all	  available	  varia9ons	  of	  possible	  twists	  to	  the	  solu9on	  	  
equa9ons.	  But	  it	  seems	  that	  those	  who’ve	  made	  the	  larger	  strides	  in	  progress	  in	  our	  field	  have	  	  
given	  special	  anen9on	  not	  only	  to	  the	  assimila5on	  strategy,	  but	  also	  to	  how	  to	  treat	  the	  	  
observa5ons	  being	  assimila9on:	  
	  
	  (a)	  removal	  of	  biases	  
	  (b)	  specifica9on	  of	  underlying	  error	  sta5s5cs	  	  
	  (c)	  treatment	  of	  balance	  	  
	  (d)	  and	  a	  host	  of	  other	  details	  
	  
have	  all	  been	  fundamental	  to	  progress	  in	  Es9ma9on	  Techniques	  for	  Earth	  Sciences.	  
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1. Objectives

The main objective of this lecture is to present a sum-
mary of some of the methods most commonly used for
state estimation.

What I hope to convey to you:

. The probabilistic approach allows for the proper descrip-
tion of most (if not all) methods currently employed in
data assimilation.

. In practice, most methods used in atmospheric and oceanic
data assimilation boil down to slightly di↵erent versions
of least-squares.

. Good understanding of the example of “estimation of a
constant vector” provides a solid basis for understanding
many of the methods currently used.

. Much attention should be given to details:

• o↵-line and on-line quality control

• removal of both model and observation biases

• proper use of observations; they should be used at
right time and be given proper error characteristics

• fields should be properly initialized

• careful consideration of tangent linear and adjoint
models issues

. Remember ... adaptive procedures are robust.

3

Main	  Objec9ve	  



2. Concepts of Probabilistic Estimation

Central to probabilistic estimation is the concept of a
joint probability distribution (pdf) of two processes x
and y, and denoted px,y(x,y).

Also, fundamental to Bayesian estimation is the defini-
tion of conditional probability distribution functions:

px|y(x|y) =
pxy(x,y)

py(y)

and Bayes rule for converting between conditional pdf’s:

px|y(x|y) =
py|x(y|x)px(x)

py(y)

The m-th conditional moment is defined as:

E{xm|y} ⌘
Z 1

�1
xm

px|y(x|y)

with the first moment, the mean, µx|y = E{x|y}.

A typical conditional pdf is that of a normally distributed
random variable x conditioned on y

px|y(x|y) =
1

(2⇡)n/2|Px|y|1/2
exp


�
1

2
(x� µx|y)

TP�1
x|y(x� µx|y)

�

which is a n-dimensional Gaussian function.

4

Bayesian	  Approach	  to	  Es9ma9on	  



2.1 Cost Function

In the Bayesian approach to estimation we define a func-
tion expressing our confidence in the estimate. This
function is referred to as the cost (or risk, or fit) func-
tion and it takes the general form:

J (x̂) ⌘ E{J(x� x̂)}

=
Z 1

�1
J(x� x̂) px(x) dx

=
Z 1

�1

Z 1

�1
J(x� x̂) pxy(x,y) dy dx

where

x true state vector
y observation vector
x̂ state estimate vector

x̃ = x� x̂ error estimate vector
J(x̃) measure of accuracy
px(x) marginal pdf of x

pxy(x,y) joint pdf between x and y

Note: Not all function J’s are satisfactory cost func-
tions.

5

Bayesian	  Approach	  to	  Es9ma9on	  

Quadra9c	  error,	  uniform	  error	  and	  absolute-‐value	  	  
error	  cost	  func9ons,	  for	  constant	  parameter.	  

A	  Few	  Examples	  of	  Cost	  Func9ons	  



Quick Recap

Bayes rule for pdf’s:

px|y(x|y) =
py|x(y|x)px(x)

py(y)

Conditional mean:

E{x|y} ⌘
Z 1

�1
x px|y(x|y)

Minimum variance estimate:

x̂MV(y) =
Z 1

�1
xpx|y(x|y) dx

= E{x|y}

Maximum a posteriori probability estimate:

@py|x(y|x)px(x)
@x

����
x=x̂MAP

= 0

Maximum likelihood estimate (max a priori pdf):

@py|x(y|x)
@x

����
x=x̂ML

= 0
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Quick Recap

Observations: y = Hx+ bo

Want to determine: px|y(x|y)

when x ⇠ N (µ,P), and bo ⇠ N (0,R), we find:

px|y(x|y)↵ exp[�
1

2
(x� x̂)TP�1

x̃ (x� x̂)]

where

P�1
x̃ = P�1 +HTR�1H ,

and

x̂ = Px̃(H
TR�1y+P�1µ)

General Cost Function:

J(x) =
1

2
(µ� x)TP�1(µ� x) +

1

2
(y �Hx)TR�1(y �Hx)

Estimation Results:

x̂MV = x̂MAP = x̂

x̂ML = Px̃H
TR�1y

x̂MV|P�1=0 = x̂MAP|P�1=0 = x̂ML
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Es9ma9ng	  a	  Constant	  Vector	  	  
from	  Noisy	  Observa9ons	  

Es9mators	   Observer	  and	  Solu9ons	  



The Least-Squares (LS) Connection

Case I: No prior information on x is available.

Minimization of the cost function

JLS(x̂) =
1

2
(y �Hx̂)T R̃�1(y �Hx̂)

results in

x̂LS = (HT R̃�1H)�1HT R̃�1y

which is identical to the ML (MV/MAP) estimate(s)
if R̃ = R. In general, however, the LS solution can
be shown to always be less accurate than that of ML
(MV/MAP).

Case II: Some information on x is available.

The cost function to be minimized is now

JLSP(x̂) =
1

2
(µ� x̂)T P̃�1(µ� x̂)+

1

2
(y�Hx̂)T R̃�1(y�Hx̂)

with minimum achieved for

x̂LSP = (P̃�1 +HT R̃�1H)�1(HT R̃�1y+ P̃�1µ)

which is identical to the MV/MAP estimate if R̃ = R
and P̃ = P. In general, however, the LSP solution
can be shown to be always less accurate than that of
MV/MAP.
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The	  Least	  Squares	  Connec9on	  



4. Three-dimensional Variational Approach

The approach known in atmospheric data assimilation as
3d-var is essentially a least squares method that in the
linear sense minimizes the cost function JLSP(x) seen
previously,

JLSP(x) =
1

2
(µ�x)T P̃�1(µ�x)+

1

2
(y�Hx)T R̃�1(y�Hx)

The minimization is typically done at synoptic hours,
with a frequency of 6 hours and using observations avail-
able within a 6-hr window around the synoptic time.

In practice, an atmospheric prediction model is assumed
to provide the mean state estimate µ, that is,

µ ⌘ xb = m(x0)

where xb is the forecast (background) at a given time af-
ter evolving the model m forward in time, starting from
an initial condition x0 representing the best estimate of
the state of the atmosphere at a previous time.

To describe 3d-var, the time indexes are not so relevant
and are dropped for simplification. Moreover, the map-
ping between observations and the estimate is nonlinear
and a slightly more general cost function is actually used

J3dvar(x) =
1

2
(xb�x)T P̃�1(xb�x)+

1

2
[y�h(x)]T R̃�1[y�h(x)]

where h(x) is the nonlinear observation function (oper-
ator).
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To minimize this cost function using feasible computa-
tional methods, one needs to transform the cost func-
tion back to a quadratic function. This can be done
by linearizing the observation operator h(x) around the
background state, that is,

h(x) ⇡ h(xb) +H(xb)�x

with �x ⌘ x�xb and H(xb) now denotes the Jacobian of
the observation operator, h(x),

H(xb) ⌘
@h(x)

@x

����
x=xb

Hence, we can right y � h(x) as

y � h(x) = y � h(xb)� h(x) + h(xb)
= d�H(xb)�x

Using this first order expansion of the observation op-
erator the cost function becomes quadratic form again

J3dvar(�x) =
1

2
�xT P̃�1

�x+
1

2
[d�H(xb)�x]T R̃�1[d�H(xb)�x]

and it defines the so-called incremental 3d-var problem,
since the cost is now written as a function of the incre-
ment vector �x.

By inspection of our “estimation of a constant” exer-
cise we see that minimization of the incremental 3d-var
problem leads to the solution

�xa = P̃aHT R̃�1d

with P̃a = (P̃�1 +HT R̃�1H)�1.
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Remarks

. The 3d-var solution provides a LSP solution to the prob-
lem given the uncertainties in the background and ob-
servation error covariances P̃ and R̃.

. Employing computational methods to minimize the cost
function directly is referred to as the 3d-var approach;
whereas calculating the estimate from the analytical so-
lution has become known as the PSAS approach, for
the Physical-space Statistical Analysis System.

. In the analytical (PSAS) approach one avoids the n di-
mensional matrix inversion, by solving an algebraically
equivalent equation (Ex. 7):

�xa = P̃HT(HP̃HT + R̃)�1d

which is known as the PSAS equation, and it involves
the inversion of an m < n dimensional matrix.

. In practice, even this observation-space inversion is not
directly calculated. Instead, the equation above is split
in two stages:

(HP̃HT + R̃)� = d
�xa = P̃HT�

where the first equation is solved using an iterative
method, such as a conjugate gradient method. Be-
cause of the size of these matrices, they are all handled
as operators, meaning, the are not actual matrices but
are function calls simulating the application of a matrix
on to a vector.
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Remarks (cont.)

. The interplay between the 3d-var and PSAS approaches
is a statement of the fact that these approaches are dual
of each other. This essential means that one can be
converted in to the other and their solutions are equiv-
alent (Ex. 8).

. But don’t get confused. Addressing the problem from
the analytical solution has nothing to do with the word-
ing “physical-space” as in PSAS. Solving the problem
from the analytical solution is detached from the way
the background error covariance is formulated.

. The a priori (background) error covariance is a parame-
terized quantity based on assumptions related to balance
relationships and possible structure of errors. Tradi-
tional implementations of the direct minimization 3d-var
approach (e.g., NCEP’s SSI) have modeled background
error covariances in spectral space. Di�culty in relaxing
the assumptions behind these spectral space formula-
tions has driven the reformulation of the covariances so
they operate in physical-space. Modern 3d-var systems
now minimize the cost function directly, and formulate
the covariance in physical space (e.g., the Grid-space
Statistical Interpolation approach)
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Remarks (cont.)

. As described here, 3d-var operates at a single time, that
is, the solution of the minimization problem is sought
at a given time. However, the observation vector y
jams together observations from a 6-hr time interval.
This means in particular that calculation of the residual
vector d ⌘ y � h(x) is not accurate since x is taken at
the time of the solution (analysis).

. Work done at operational centers has demonstrated that
an improvement in the solution of the problem can be
obtained when using an approach called FGAT: first
guess at appropriate time. In this approach the function
h is augmented to accommodate backgrounds (first-
guesses) at various times within the window of observa-
tions. Typically, in 3d-var systems, FGAT means taking
x at �3, 0, and 3 hrs from the synoptic hour; or some-
times taking them on an hourly basis. In these cases,
the function h(x) also accommodates a time interpola-
tion procedure to calculate the d vectors at exactly the
time of the observations.
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5. Four-dimensional Variational Approach

The FGAT approach is a simple attempt to address the
lack of a time dimension in 3d-var. The proper way to
account for the time dimension is to redefine the cost
function:

2J4dvar = ||x�x0||B�1+
IX

i=0

||y
i

�h(x
i

)||R�1
i

+
IX

i=1

||x
i

�m(x
i�1)||Q�1

i

where ||x||A ⌘ xTAx, for an arbitrary n-vector x and an
arbitrary n⇥ n-matrix A.

The cost function above applies to a discrete time in-
terval with a total of I time slots. The first term ac-
commodates the uncertainty in the initial condition with
the matrix B being the error covariance associated with
this uncertainty; the second term accommodates the
uncertainties in the states x

i

with respect to the obser-
vations at all times t

i

in the interval, weighted by the
observation error covariances R

i

; and the last term ac-
commodates for uncertainties in the states themselves,
weighted by the model error covariances Q

i

. This last
term takes care of the fact that the prediction model is
assumed to be imperfect:

x
i

= m(x
i�1) + q

i

with the sequence of q
i

vectors assumed to be white in
time and normal with mean zero and covariance Q

i

, i.e.,
q
i

⇠ N (0,Q
i

).
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Using the incremental approach we can re-write the cost
function as

2J4dvar = ||�x0||B�1 +
IX

i=0

||d
i

�H
i

�x
i

||R�1
i

+
IX

i=1

||q
i

||Q�1
i

where here again, H
i

is the Jacobian of h. This trans-
forms the dependence on the cost function from
J4dvar = J4dvar(x0,x1, · · · ,x

I

) to J4dvar = J4dvar(�x0,q1, · · · ,q
I

).

The simplest way to understand how 4d-var basically
amounts to a gigantic LSP is by re-writing further the
cost function based on the following augmented vectors:
�x ⌘

⇥
�xT

0q
T

1 · · ·qT

I

⇤
T

and d ⌘
⇥
dT

0d
T

1 · · ·dT

I

⇤
T

. Therefore
(Ex. 9),

2J4dvar(�x) = �xTD�1
�x+ (G�x� d)R�1(G�x� d)

where the a priori error covariance matrix becomes D ⌘
diag(B,Q1, · · · ,Q

N

), the observations error covariance
becomes R ⌘ diag(R1,R2, · · · ,R

N

) and the “observa-
tion” matrix becomes

G ⌘

0

BBB@

H0 0 0 · · · 0
H1M1,0 H1 0 · · · 0
H2M2,0 H2M2,1 H2 0 · · ·

· · · · · · · · · · · · · · ·
H

I

M
I,0 H

I

M
I,1 H

I

M
I,2 · · · H

I

1

CCCA

where M
i,i�1 is the Jacobian of the forward model

M
i,i�1(xb

i�1) ⌘
@m(x

i�1)

@x
i�1

����
x

i�1=xb

i�1

is now part of the observation matrix.
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Four-‐dimensional	  Varia9onal	  Approach	  
Formally, we can infer the solution of the minimization
of this gigantic cost function by referring back to our
“estimation of a constant” exercise, i.e., at the mini-
mum the solution is give by

�xa = (D�1 +GTR�1G)�1GTR�1d

Similarly to 3dvar, when the solution to 4d-var is being
sought by directly minimizing the cost function we need
its gradient to be available

r
�xJ = D�1

�x+GTR�1(G�x� d)

since practical minimization algorithms are gradient-based,
e.g., the conjugate gradient method.

Alternatively, we can use the algebraically equivalent ex-
pression

�xa = DGT(GDGT +R)�1d

which is analogous to the PSAS equation, but since it
now involves the fourth dimension of time it is known
here as the 4d-PSAS equation. Just as in the 3d case, a
practical approach to solve the 4d-PSAS equation splits
the equation in two steps:

(GDGT +R)� = d

�xa = DGT�

where here the vectors �xa, �, and d are all four-dimensional.

28
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Remarks

. To solve the first 4D-PSAS equation we must have a
smart way of applying the gigantic matrix on the left-
hand-side to the vector �. The main complication in
this operation comes from having to calculate GDGT�.
To do so, we can notice that an element j of this term
is given by (Ex. 10)

(GDGT�)
j

= H
j

M
j,0B

IX

i=1

MT

i,0H
T

i

�
i

+ H
j

jX

m=1

M
j,m

Q
m

IX

i=m

MT

i,m

HT

i

�
i

These calculations can be broken down in to a backward
integration of the equation

f
i

= MT

i+1,ifi+1 +HT

i

�
i

for i = I � 1, I � 2, · · · ,0, with f
I

⌘ HT

I

�
I

; followed by a
forward integration

g
m

= M
j,m�1gm�1 +Q

m

f
m

for m = 1,2, · · · , j, and with g0 ⌘ Bf0. This sequence of
operations is known as the sweeper method and specifi-
cally constitute the so called augmented representer ap-
proach to the practical solution to calculating the 4d-
PSAS equation (Ex. 11).

. In the perfect model case, Q = 0, the 4d-var and 4d-
PSAS equations above dramatically simplify.
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6. The Probabilistic Approach to Filtering

Let us indicate by Yo

k

= {yo

1, · · · ,yo

k�1,y
o

k

}, the set of all
observations up to and including time t

k

. Similarly, let
us indicate by Xt

k

= {xt

1, · · · ,xt

k�1,x
t

k

} the set of all true
states of the underlying system up to time t

k

.

Knowledge of the pdf of the true state over the entire
time period given all observations over the same period
would allow us to calculate an estimate of the trajec-
tory of the system over the time period. Therefore,
calculation of the following pdf

p(Xt

k

|Yo

k

)

is desirable. But, before seeking a system trajectory
estimate, let us seek an estimate of the state of the
system only at time t

k

. For that, the relevant pdf is

p(xt

k

|Yo

k

) = p(xt

k

|yo

k

,Yo

k�1)

=
p(xt

k

,yo

k

,Yo

k�1)

p(yo

k

,Yo

k�1)

=
p(yo

k

|xt

k

,Yo

k�1)p(x
t

k

,Yo

k�1)

p(yo

k

,Yo

k�1)

=
p(yo

k

|xt

k

,Yo

k�1)p(x
t

k

|Yo

k�1)p(Y
o

k�1)

p(yo

k

|Yo

k�1)p(Y
o

k�1)

=
p(yo

k

|xt

k

,Yo

k�1)p(x
t

k

|Yo

k�1)

p(yo

k

|Yo

k�1)
.

This relates the transition probability of interest with
pdf’s that can be calculated more promptly.
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Whiteness of the observation sequence allows us to write

p(yo

k

|xt

k

,Yo

k�1) = p(yo

k

|xt

k

)

and therefore,

p(xt

k

|Yo

k

) =
p(yo

k

|xt

k

)p(xt

k

|Yo

k�1)

p(yo

k

|Yo

k�1)

It remains for us to determine each one of the transition
probability densities in this expression.

Assumption: all pdf’s (processes) are Gaussian and the
observation process is linear, that is, yo

k

= H
k

xt

k

+ bo

k

,
with bo

k

⇠ N (0,R
k

).

In this case, an immediate relationship between the vari-
ables above and those from the example of estimating
a constant vector can be drawn:

. y ! yo

k

. x ! xt

k

. py|x(y|x) ! p(yo

k

|xt

k

)

. px(x) ! p(xt

k

|Yo

k�1)

. py(y) ! p(yo

k

|Yo

k�1)
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Consequently we have

p(yo

k

|xt

k

) =
1

(2⇡)mk

/2|R
k

|1/2

exp


�
1

2
(yo

k

�H
k

xt

k

)TR�1
k

(yo

k

�H
k

xt

k

)

�

where we noticed that

E{yo

k

|xt

k

} = E{(H
k

xt

k

+ bo

k

)|xt

k

} = H
k

xt

k

and

cov{yo

k

,yo

k

|xt

k

} ⌘ E{[yo

k

� E{yo

k

|xt

k

}][yo

k

� E{yo

k

|xt

k

}]T |xt

k

}
= R

k

Analogously, we have

p(yo

k

|Yo

k�1) =
1

(2⇡)mk

/2|�
k

|1/2

exp
h
�
1

2
(yo

k

�H
k

xf

k|k�1)
T��1

k

(yo

k

�H
k

xf

k|k�1)
i

where we define xf

k|k�1 and the m

k

⇥m

k

matrix �
k

as

xf

k|k�1 ⌘ E{xt

k

|Yo

k�1} , �
k

⌘ H
k

Pf

k

HT

k

+ R
k

with the n⇥ n matrix Pf

k

defined as

Pf

k|k�1 ⌘ E{[xt

k

� xf

k

][xt

k

� xf

k

]T |Yo

k�1}
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To fully determine the a posteriori conditional pdf p(xt

k

|Yo

k

),
it remains to find the a priori conditional pdf p(xt

k

|Yo

k�1).
Since we assumed all pdf’s to be Gaussian, the from
the definitions of xf

k

and Pf

k

above we have p(xt

k

|Yo

k�1) ⇠
N (xf

k|k�1,Pk|k�1), that is,

p(xt

k

|Yo

k�1) =
1

(2⇡)n/2|Pf

k

|1/2

exp
h
�
1

2
(xt

k

� xf

k|k�1)
T(Pf

k|k�1)
�1(xt

k

� xf

k|k�1)
i

and the conditional pdf of interest can be written as

p(xt

k

|Yo

k

) =
1

(2⇡)n/2|Pa

k|k|1/2
exp

✓
�
1

2
J

◆

where

J = (xa

k|k � xt

k

)T(Pa

k|k)
�1(xa

k|k � xt

k

)

is the cost function, with xa

k|k minimizing it.

We can now identify the quantities x̂MV and Px̃ of the
problem of estimating a constant vector with xa

k

and
Pa

k

, respectively. Consequently, it follows from this cor-
respondence that

xa

k|k = xf

k|k�1 + Pf

k|k�1H
T

k

��1
k

(yo

k

�H
k

xf

k|k�1)

(Pa

k|k)
�1 = (Pf

k|k�1)
�1 + HT

k

R�1
k

H
k

33



Probabilis9c	  Approach	  to	  Filtering	  
Remarks

. The estimate xa

k|k maximizing the a posteriori pdf is the
MAP estimate.

. Moreover, since the resulting a posteriori pdf is Gaus-
sian, this estimate is also the conditional mean, that
is,

xa

k|k ⌘ E{xt

k

|Yo

k

} ,
and therefore it is the MV estimate which is what the
Kalman filter obtains.

. Similar results can be obtained by minimizing the cost
function

J3dVar(�xk

) ⌘ �xT

k

(Pf

k|k�1)
�1

�x
k

+ (d
k

�H
k

�x
k

)TR�1
k

(d
k

�H
k

�x
k

)

where �x
k

⌘ xt

k

� xf

k|k�1, and d
k

⌘ yo

k

� H
k

xf

k|k�1. In

the meteorological literature J3dVar(�xk

) is referred to
as the incremental three-dimensional variational (3dvar)
analysis cost function.

. Since in practice we have only rough estimates of the
observations and forecast error covariance matrices R

k

and Pf

k|k�1, the minimization problem above solves none
other than a LSP problem, given some prior information.
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Remarks (cont.)

. So far we have made no assumptions about the process
xt

k

other than its conditional pdf p(xt

k

|Xo

k�1) being Gaus-
sian. However, if we want to be able to calculate an
estimate of the state one time ahead, that is at t

k+1,
using the knowledge gather up to time t

k

we must con-
sider the pdf

p(xt

k+1,x
t

k

|Xo

k

) = p(xt

k+1|xt

k

,Xo

k

)p(xt

k

|Xo

k

)

= p(xt

k+1|xt

k

)p(xt

k

|Xo

k

)

which refers to the yet unspecified transition pdf p(xt

k+1|xt

k

)
and therefore we must know more about the process xt

k

.

. When the process xt

k

is linear the calculations are simple.
That is, the system

xt

k+1 = M
k+1,kx

t

k

+ bt

k+1

with bt

k+1 ⇠ N (0,Q
k+1) results in a Gaussian transition

pdf (for an initial Gaussian pdf p(xt

0)):

p(xt

k+1|xt

k

) ⇠ N (M
k+1,kx

t

k

,Q
k+1) .

. For linear dynamical process above it follows that

xf

k+1 = = M
k+1,kE{xt

k+1|Yo

k

} + E{bt

k+1|Yo

k

}
= M

k+1,kx
a

k|k

Pf

k+1|k = cov{xt

k+1,x
t

k+1|Yo

k

}

= M
k+1,kP

a

k|kM
T

k+1,k + Q
k+1
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Kalman	  Filter	  for	  Highly	  Nonlinear	  Dynamics	  

From	  Miller	  et	  al.	  (1994)	  

Robert	  N.	  Miller	  

Stochas9cally	  forced	  double-‐well	  poten9al	  



Diverging	  Solu9ons	  from	  Highly	  	  
Nonlinear	  Dynamics	  

What	  does	  a	  9ny	  ini9al	  perturba9on	  do	  to	  predic9on?	  

σ(0)	  =	  10-‐6	  

Answer:	  Cause	  some	  (chao9c)	  trouble!	  

What	  about	  a	  not-‐so-‐9ny	  ini9al	  perturba9on?	  

Answer:	  It	  	  causes	  a	  lot	  of	  trouble!	  	  The	  two	  runs	  started	  
from	  ini9al	  condi9ons	  differing	  by	  about	  a	  few	  percent	  in	  
magnitude.	  You	  can	  think	  of	  the	  red	  lines	  as	  being	  the	  true	  
state	  evolu9on	  and	  the	  green	  lines	  as	  being	  the	  predicted	  
state.	  In	  this	  case,	  the	  predic9on	  becomes	  useless	  very	  
quickly.	  The	  solu9on	  to	  this	  problem	  is	  to	  assimilate	  
observa9ons.	  

σ(0)	  =	  1	  



The	  Extended	  Kalman	  Filter	  for	  Highly	  	  
Nonlinear	  Dynamics	  

Then,	  what	  does	  data	  assimila9on	  do?	  
σ(obs)	  =	  2	  

Answer:	  It	  improves	  our	  ability	  to	  es9mate	  the	  true	  state	  and	  make	  
rela9vely	  reasonable	  short-‐	  to	  medium-‐range	  predic9ons.	  However,	  
depending	  on	  the	  data	  assimila9on	  scheme,	  the	  es9mate	  may	  diverge	  
aver	  a	  while.	  The	  red	  line	  represents	  the	  true	  state	  while	  the	  green	  line	  
represents	  the	  es9mate	  (assimila9on),	  the	  crosses	  are	  the	  observa9ons;	  
the	  data	  assimila9on	  scheme	  is	  the	  extended	  Kalman	  filter	  (EKF).	  

Back	  to	  Miller	  et	  al	  (1994)	  

Red:	  Truth	  
Green:	  Es9mate	  
Pluses:	  Observa9ons	  



Some	  Traps	  to	  Avoid	  

Filter	  error	  es9mates	  are	  reliable	  indicators	  of	  performance!	  	  

From	  Maybeck	  (1981	  also	  1982)	  

Lesson:	  	  Ideally	  the	  specified	  (computed)	  
error	  covariances	  should	  be	  as	  close	  as	  possible	  
to	  the	  true	  error	  covariance	  (bonom)	  –	  this	  is	  
what	  we	  all	  aim	  when	  trying	  to	  tune	  the	  error	  	  
sta9s9cs	  in	  our	  systems.	  
	  
Under	  es3ma3on	  of	  errors	  is	  rather	  undesirable	  
as	  it	  is	  bound	  to	  lead	  to	  filter	  divergence	  (top).	  
	  
In	  general,	  slightly	  over	  es3ma3on	  of	  error	  keeps	  	  
the	  filter	  from	  “believing”	  too	  much	  on	  its	  own	  	  
es9mates	  –	  thus	  preven9ng	  divergence	  	  
(mid-‐plot	  shows	  an	  exaggerated	  version	  of	  this	  
–	  that	  in	  this	  case	  s9ll	  diverge).	  
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From	  Ghil	  et	  al.	  (1981)	  
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Lesson:	  No.	  Only	  in	  the	  expected	  mean	  	  
	  	  	  	  	  sense,	  and	  in	  the	  op3mal	  (BLUE)	  	  	  
	  	  	  	  	  circumstance	  this	  is	  the	  case.	  Recall	  	  
	  	  	  	  	  also	  that	  in	  prac9ce	  we	  only	  have	  a	  
	  	  	  	  	  single	  realiza9on	  of	  nature	  to	  work	  
	  	  	  	  	  from.	  

Some	  Traps	  to	  Avoid	  

BLUE:	  The	  linear	  Kalman	  filter	  is	  some9mes	  referred	  to	  as	  the	  
	  	  	  	  	  	  	  	  	  	  	  	  (b)est	  (l)inear	  (u)nbiased	  (e)s9mate	  –	  for	  linear	  problems	  
	  	  	  	  	  	  	  	  	  	  	  	  	  under	  assumed	  error	  sta9s9cs.	  



and observations are comparable. Results such as the
one in Fig. 10a, suggesting that only roughly 50% of the
observations lead to positive impact on the 24-h fore-
cast, has led Gelaro et al. (2010) to the conclusion that
operational systems cannot be expected to perform at
theoretical levels. Results displayed in Fig. 10b state
otherwise: operational systems do corroborate the scalar
theoretical analysis. The bulk of the observing system
contributes at exactly the expected theoretical range,
that is, 60%–65% of the assimilated observations con-
tribute positively. This is further corroboration of what
was concluded while examining the result of Fig. 6,
that is, global measures indicate that current operational
data assimilation systems run near optimality. This is
not to say further improvements are not needed or pos-
sible. As results from Fig. 7 have indicated, there is still
plenty of room for improvements when we start looking
more closely. Similarly, results from Fig. 10 suggest work
needs to be done to bring performance of some ob-
serving systems to theoretical levels.

4. Conclusions

Studies of observation impact on the forecast have
relied on the approach put forward by Langland and
Baker (2004). A number of works have followed since.
The present work is a contribution that provides insight
on basic issues behind the technique. A few limitations
and difficulties associated with the basic approach have
been highlighted here, namely: (i) the need to rely on
a norm not directly linked to the underlying data as-
similation cycle; (ii) the need to rely on a verifying state;
(iii) the need to rely on the model adjoint; and last, (iv)
the added computational expense. Though (iii) has been
tackled in the work of Liu and Kalnay (2008) by gen-
eralizing the approach of Langland and Baker to work

within the context of ensemble data assimilation pro-
cedures, the other issues still remain. More complex is
the idea of using observation impacts derived from these
available techniques as an aid to improve on the use of
observations in the corresponding cycling data assimi-
lation system.
The present work identifies two approaches to ob-

servation impacts. The ‘‘traditional’’ method works in
state space, while an alternative is to define measures
of observation impact directly in observation space.
Arguing that results from observation impact studies
must be interpreted statistically, the present work re-
casts the problem in the language of estimation theory.
This allows studying more closely the assumptions in-
volved in the methodology. In particular, it becomes
clear that a state-space approach is more encompassing
than an observation-space approach, simply because ob-
servations span a smaller space than the full state space.
But this advantage quickly disappears when realizing
that the state-space approach requires a verification
state normally not available in practice. Under certain
conditions, the consequences of choosing the analysis
for verification are investigated, showing explicitly how
the corresponding observation impacts carry undesir-
able correlations with the verification. The observation-
space approach, on the other hand, allows verification to
be made against the observations therefore, in principle,
avoiding such undesirable correlations. Furthermore, the
observation-space approach permits evaluating what is
obtained when the analyses, instead of the observations,
are used for verification. It is shown that only under op-
timality can a system be indifferent to whether verifica-
tion is done against the observations or the analyses. It
is recognized in the present work that some of this ad-
vantage disappears in practice since observations are
usually bias corrected, thus making the observations also

FIG. 10. As in Fig. 9, but showing percentage of observations contributing positively to the (a) 24- and (b) 0-h
forecasts. The vertical line in both panels indicates the 50% beneficial mark for reference.
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Lesson:	  As	  long	  as	  there	  are	  uncertainty	  in	  the	  observa9ons	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  in	  our	  models	  there	  will	  always	  be	  a	  considerable	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  frac9on	  of	  the	  data	  that	  will	  deteriorate	  our	  es9mate.	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  Anempts	  to	  eliminate	  observa9ons	  that	  seem	  to	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  offend	  the	  es9mate	  can	  at	  best	  work	  locally.	  

(another	  illustra9on)	  

From	  Ehrendorfer	  	  (2007)	  
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Figure 2: The probability for degrading the background xb

through analysing observations of varying accuracy, as parameter-
ized through the ratio σo/σb (shown in terms of its logarithm to the
base ten on the abszissa), as obtained through Monte Carlo sam-
pling of Eq. (F.8), with sample sizes of 50 (magenta), 102 (blue), 103

(green), 104 (orange), and 105 (red). The dotted blue curve shows the
expectation of the quantity d ≡ x2a − x2b (see Eq. (F.8)), normalized
by σ2b , with the ordinate to the right applying, again as a function of
varying observation accuracy, as given in Eqs. (F.9) and (F.10).

4.1 The accuracy of analyses

In this section the following question is considered: is it
possible that the background field is degraded in terms
of its quality through assimilating any given observation,
even when it is assumed that all observational and back-
ground error statistics are correctly specified? In other
words, is it possible that the analysis is further away
from the truth than the presently available background?
The answer to this question is affirmative as shown

in the discussion below that is based on the one-
dimensional formulation of the KF analysis equation.
While it is true that through the assimilation of an ob-
servation the analysis-error variance is always smaller
than the background-error variance (see, Eq. (2.6)), this
fact does not imply that analysed field is closer to the
true field on a case-to-case basis. There is in fact a cer-
tain non-zero probability (shown in Fig. 2, see below)
that the analysed field is further away from the true field
than the background is which translates into a degrada-
tion of the background field. The fundamental reason for
seeing this behavior is that the analysed field exhibits
variability, according to its analysis-error variance; or,
stated differently, it is the analysis-error variance that is
smaller than the background-error variance, and not the
accuracy of any individual field on a case-to-case basis.
Apart from the desire to provide a clear and unam-

biguous answer to this often-raised question, at least in
a one-dimensional context, the discussion of the above
issue is included here to illustrate that sampling issues,
namely the relationship between single realizations and

distribution function for d
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Figure 3: The distribution function F(d) assessed empirically from
the experiment with sample size equal to 105 of Fig. 2 for σo/σb =

10−1 (blue curve), σo/σb = 1 (green curve), and σo/σb = 102 (red
curve). Note that the (theoretical) means of these distribution func-
tions may be read off from the blue dotted curve in Fig. 2 as being
approximately equal to −1, −0.5, and zero, respectively.

the statistics of these realizations, play a role in its inves-
tigation, too. However, since the sampling involved here
is now from the observation-error distribution, these lat-
ter sampling issues are not directly related to the finite
small-sample-size issues in ensemble-based Kalman fil-
tering forming the primary topic of this review.
For a quantitative discussion of the above-stated

question, the quantity d is defined as the difference be-
tween the analysis error and the background error (see,
Eq. (F.8)). Then, whenever the situation d > 0 occurs,
the background field has been degraded. The relation-
ship of an individual realization of d to a realization of
an observation y and a background field realization xb,
is discussed in detail in appendix F for the situation of
the analysis step in a one-dimensional KF. In this dis-
cussion, the analysis step only is considered, without
the subsequent implication on forecast errors. Further,
in this purely static experiment, all statistics are assumed
to be known correctly, and are not derived from cycling
experiments.
As d is a nonlinear function of other random vari-

ables, it is difficult to assess its properties analytically.
Therefore, the chance for the event d > 0 is evaluated
numerically through a Monte Carlo process, essentially
by randomly generating realizations of xa and xb from
their respective pdfs (see Eqs. (F.3) and (F.4)).
The result of these computations is shown in Fig-

ure 2 in terms of the (frequentist) probability for d > 0
as a function of σo/σb (i.e., the ratio of observational-
error and background-error standard deviations, respec-
tively; see also appendix F) for various sampling sizes
in this Monte Carlo process (where σb = 1 has been ar-
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possible that the background field is degraded in terms
of its quality through assimilating any given observation,
even when it is assumed that all observational and back-
ground error statistics are correctly specified? In other
words, is it possible that the analysis is further away
from the truth than the presently available background?
The answer to this question is affirmative as shown

in the discussion below that is based on the one-
dimensional formulation of the KF analysis equation.
While it is true that through the assimilation of an ob-
servation the analysis-error variance is always smaller
than the background-error variance (see, Eq. (2.6)), this
fact does not imply that analysed field is closer to the
true field on a case-to-case basis. There is in fact a cer-
tain non-zero probability (shown in Fig. 2, see below)
that the analysed field is further away from the true field
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the statistics of these realizations, play a role in its inves-
tigation, too. However, since the sampling involved here
is now from the observation-error distribution, these lat-
ter sampling issues are not directly related to the finite
small-sample-size issues in ensemble-based Kalman fil-
tering forming the primary topic of this review.
For a quantitative discussion of the above-stated

question, the quantity d is defined as the difference be-
tween the analysis error and the background error (see,
Eq. (F.8)). Then, whenever the situation d > 0 occurs,
the background field has been degraded. The relation-
ship of an individual realization of d to a realization of
an observation y and a background field realization xb,
is discussed in detail in appendix F for the situation of
the analysis step in a one-dimensional KF. In this dis-
cussion, the analysis step only is considered, without
the subsequent implication on forecast errors. Further,
in this purely static experiment, all statistics are assumed
to be known correctly, and are not derived from cycling
experiments.
As d is a nonlinear function of other random vari-

ables, it is difficult to assess its properties analytically.
Therefore, the chance for the event d > 0 is evaluated
numerically through a Monte Carlo process, essentially
by randomly generating realizations of xa and xb from
their respective pdfs (see Eqs. (F.3) and (F.4)).
The result of these computations is shown in Fig-

ure 2 in terms of the (frequentist) probability for d > 0
as a function of σo/σb (i.e., the ratio of observational-
error and background-error standard deviations, respec-
tively; see also appendix F) for various sampling sizes
in this Monte Carlo process (where σb = 1 has been ar-

From	  Todling	  	  (2013)	  

Some	  Traps	  to	  Avoid	  

Percentage	  of	  observa9ons	  
contribu9ng	  to	  improve	  the	  	  
assimila9on	  cycle	  of	  a	  real	  
NWP	  data	  assimila9on	  system.	  
Contribu9ons	  are	  split	  into	  
separate	  components	  of	  	  
observing	  system	  over	  the	  	  
month	  of	  August	  2007.	  	  



Time	  averaging	  provides	  good	  means	  of	  ge�ng	  handle	  on	  sta9s9cs!	  

Lesson:	  Not	  necessarily.	  Time	  averaging	  
filter	  sta9s9cs	  has	  the	  tendency	  to	  provide	  
underes9mates	  of	  variances,	  for	  example.	  	  
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Figure 2. Similar to Fig. 1, but now for a Wiener filter when both components of the state vector are observed and the model is inaccurate
not only in predicting the second component of the state vector but also the first. With two observations available we are able to estimate
the entire, 2⇥ 2-system error covariance matrix, and the bottom panel of Fig. 1 is therefore replaced with the 4-panel set shown on the
right depicting the time series of the estimates of each element of this matrix.
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Figure 3. Similar to the 4-set panel in Fig. 2, but obtained after 30 Monte-Carlo simulations to reliably estimate calculating the expected
cross-covariance (9) through sampled covariances. The time-mea values of the estimate elements appearing in the title of each plot are
simply to give an idea of the overall quality of the estimates.

fully damped toward the end of the period. Estimates obtained for the system error covariance appear in the four panels on
the right and show considerably better values than those obtained with the single realization case of Fig. 2. With a reliable
calculation of the expectation operator obtained from the Monte Carlo simulations, the estimates of each element of Q are
considerably tighter and more representative of the quantities sought after. The time average of the Monte Carlo estimates
for each component are also considerably closer to their true values than they are in Fig. 2 (compare headings on each
panel); the diagonal of Q is estimated to be (0.32762, 3.3138) and the off-diagonal elements are rather close to zero.

(b) The Lorenz 95 dynamics

The damped harmonic oscillator illustration is very simplistic and serves only to give an academic idea of the feasibility
of the estimation procedure of Section 1. One important missing factor in that example is lack of nonlinearity with the
consequent implication that well-behaved suboptimal schemes are rather simple to devise. To add complexity, though still
academic, we now consider estimating system error for an assimilation problem based on the Lorenz (1995) dynamics.
The model is composed of the following set of 40 coupled non-dimensional ordinary differential equations (ODEs), which
we write in the form of a stochastic system of ODEs:

dx
i

= [(x
i+1 � x

i�2)xi�1 � x
i

+ F ] dt+
X

j

g
ij

dw
j

, (17)

for i = 1, 2, · · · , 40, and with periodic boundary conditions

x�1 = x39 , x0 = x40 , x41 = x1 . (18)

We follow Lorenz and Emanuel (1998) and choose the forcing term F = 8 to get solutions within the chaotic regime.
Additionally, we allow for the presence of an additive stochastic forcing term, taken as white with weights given by
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The damped harmonic oscillator illustration is very simplistic and serves only to give an academic idea of the feasibility
of the estimation procedure of Section 1. One important missing factor in that example is lack of nonlinearity with the
consequent implication that well-behaved suboptimal schemes are rather simple to devise. To add complexity, though still
academic, we now consider estimating system error for an assimilation problem based on the Lorenz (1995) dynamics.
The model is composed of the following set of 40 coupled non-dimensional ordinary differential equations (ODEs), which
we write in the form of a stochastic system of ODEs:
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and as before, the approximation becomes an equality when the model and observation operators are linear.
Both (9) and (15) provide a way to estimate the component of system error projected onto the observing network. We

note that (9) is less restrictive than (15) in that the former requires only the smoother to be optimal for the result to be
exact, whereas the latter requires both the filter and smoother to be optimal. In practice, optimality is a strong requirement
for either the filter or the smoother components of the sequential assimilation procedure. Indeed, as remarked earlier, the
left-hand-side of many of the expressions above are generally cross-covariances that only in the optimal case reduce to
covariances. Even with such caveats, expressions (11) are found to be useful in practice and permit extracting information
on background, observation and analysis errors (Desroziers et al. 2005). This suggests that practical data assimilation
systems, i.e., operational systems, run near optimality (Todling 2012). This rationale gives hope for expressions (9) and
(15) to become useful in helping estimate and diagnose system errors. A relevant question, addressed in what follows,
is whether we can estimate system error when the underlying suboptimal filter assumes the model to be perfect – which
is what most current operational assimilation systems do. Furthermore, we might ask how the sequential approach above
connects with the variational approach; in this respect, some algebraic analysis is presented in Part II of this work to recast
the lag-1 sequential procedure for system error estimation into a variational formulation.

3. Illustrations: applications to idealized models in the sequential framework

We provide now two illustrations of the idea laid out in the previous section. The first is an application to a very simple
linear damped harmonic oscillator where optimality issues can be fully and precisely investigated. The second is an
application to the Lorenz (1995) chaotic dynamics where, additionally, we can examine how nonlinearity might affect the
estimation results. We should emphasize that the goal here is to study the problem of estimating system error and not the
data assimilation schemes; obviously, we strive to have reliable schemes in all that is considered here.

(a) The linear harmonic oscillator

Many flavors of the estimation problem for the classical harmonic oscillator disturbed by noise can be found in the
literature. Here we take the form of the problem as studied in Example 10.3 of Maybeck (1982, pp. 90-95). Consider the
true dynamical and observing processes to be

x
k

=


0 1
�1 �0.8

�
x
k�1 + q

k

, (16a)

yo

k

= Hx
k

+ ✏
k

, (16b)

respectively, where q
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and ✏
k

are zero-mean white Gaussian processes with time-independent covariances Q
k

= Q and
R

k

= R to be specified below. The parameters in the dynamics are such that they simulate a damped harmonic oscillator
with two stable modes.

The true initial state is taken to be x0 = [10 10]T , and the initial state estimate is drawn from a normal distribution,
N (x0,P0), with mean x0 and a diagonal covariance P0 with variances equal to 100 in both elements of the state vector
– that is, initially, very little is known about the state. Recall that, under appropriate circumstances, the initial conditions
are rather quickly forgotten by the linear Kalman filter (e.g., Jazwinski 1970, section 7.10). Simulations are conducted for
a total of k = 100 sampling steps. Let us now consider a couple of situations.
Optimal case

We begin by using the linear Kalman filter and lag-1 smoother, which are optimal when the statistics of errors are known.
Take the following choices for the observing network, and system and observation errors: H

k|k�1 = H = [1 0]T , Q
k

=
diag(0, 10/3), and R

k

⌘ r = 0.1, respectively. This choice corresponds to a situation in which modeling uncertainty is
only present in the second (velocity) component of the 2-element state vector x

k

, and only the first (position) element
of the state vector is observed. The signal-to-noise ratio is such that smoothing provides considerable improvement over
filtering when estimating x2 but not much noticeable improvement in the estimates of x1. This is simply a consequence
of the fact that the Kalman filter estimates become quickly accurate for x1 given the available measurements of this
component, and the lack of observations for x2 (see Maybeck 1982, Examples 8.1-3, for full discussion of the effects of
different signal-to-noise scenarios for this system).

A typical realization of the state evolution with this choice of parameters is displayed in Fig. 1. The top and middle
panels show the time evolution of the first and second components of the state vector, respectively. There are three curves
in each panel representing: the true state in red, the filter estimate in blue, and the lag-1 smoother estimate in green. As
mentioned above, both estimates of x1 are so accurate that it is hard to distinguish the three curves beyond the second
sampling time step in the top panel; the filter estimates of x2 (middle panel) are somewhat less accurate and one can see the
blue curve not fully lining up with that for the truth (red curve; nearly invisible); the benefit from calculating lag-1 Kalman
smoother estimates is noticeable since they are essentially indistinguishable from the true state. The time evolution of the
error covariance matrices Pb

k|k�1 and Pa

k

are not shown since, in such a simple problem, they are quite straightforward as
the filter settles quickly into steady state. The error covariance for the smoother estimates can easily be calculated (e.g.,
see Cohn et. al. 1994), but again it becomes straightforward as the smoother too settles quickly into steady state.

The bottom panel of Fig. 1 shows the time series of the model error covariance matrix projected onto the observation
space, H

k|k�1Qk

HT

k|k�1, and the time series of the sampled cross-covariance matrix �
k|k�1,k �R

k

, where R
k

is taken
to be known; these quantities are scalars in the present, single observation case. The matrix �

k|k�1,k is calculated from
the outer product of the OMB and OMRF residuals at each time, for the single realization currently available. Since only
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and as before, the approximation becomes an equality when the model and observation operators are linear.
Both (9) and (15) provide a way to estimate the component of system error projected onto the observing network. We
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– that is, initially, very little is known about the state. Recall that, under appropriate circumstances, the initial conditions
are rather quickly forgotten by the linear Kalman filter (e.g., Jazwinski 1970, section 7.10). Simulations are conducted for
a total of k = 100 sampling steps. Let us now consider a couple of situations.
Optimal case

We begin by using the linear Kalman filter and lag-1 smoother, which are optimal when the statistics of errors are known.
Take the following choices for the observing network, and system and observation errors: H

k|k�1 = H = [1 0]T , Q
k

=
diag(0, 10/3), and R

k

⌘ r = 0.1, respectively. This choice corresponds to a situation in which modeling uncertainty is
only present in the second (velocity) component of the 2-element state vector x

k

, and only the first (position) element
of the state vector is observed. The signal-to-noise ratio is such that smoothing provides considerable improvement over
filtering when estimating x2 but not much noticeable improvement in the estimates of x1. This is simply a consequence
of the fact that the Kalman filter estimates become quickly accurate for x1 given the available measurements of this
component, and the lack of observations for x2 (see Maybeck 1982, Examples 8.1-3, for full discussion of the effects of
different signal-to-noise scenarios for this system).

A typical realization of the state evolution with this choice of parameters is displayed in Fig. 1. The top and middle
panels show the time evolution of the first and second components of the state vector, respectively. There are three curves
in each panel representing: the true state in red, the filter estimate in blue, and the lag-1 smoother estimate in green. As
mentioned above, both estimates of x1 are so accurate that it is hard to distinguish the three curves beyond the second
sampling time step in the top panel; the filter estimates of x2 (middle panel) are somewhat less accurate and one can see the
blue curve not fully lining up with that for the truth (red curve; nearly invisible); the benefit from calculating lag-1 Kalman
smoother estimates is noticeable since they are essentially indistinguishable from the true state. The time evolution of the
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the filter settles quickly into steady state. The error covariance for the smoother estimates can easily be calculated (e.g.,
see Cohn et. al. 1994), but again it becomes straightforward as the smoother too settles quickly into steady state.

The bottom panel of Fig. 1 shows the time series of the model error covariance matrix projected onto the observation
space, H
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Figure 1. Illustration of the lag-1 residual cross-covariance approach for estimating model error estimation: optimal filter case. Top and
middle panels embed three curves: red for the truth; green for filter estimate; and blue for lag-1 smoother estimate. The bottom panel
shows the diagonal of the single-realization cross-covariance in (1), which provides an estimate of the model error variance at each
time. The true value of the error variance (Qt) can be compared with the rough estimate obtained by averaging the sample estimates
over time (Qe).

the first component of the 2-element state vector x
k

is observed, only element (1, 1) of the model error covariance can be
estimated in this case. That is, in this case, only the perfect component of the model can be estimated. The figure shows the
true value, Q

t

= 0, of this element as the black solid line. The cross-covariance estimates (magenta curve) bounce around
the true value of the error, becoming negative as a consequence of it being estimated on the basis of a single realization of
the residual cross-covariance — since the filter is optimal. A rough estimate of this component of the error can be obtained
by averaging the estimates over time to obtain Q

e

= �0.014369. That the averaged result is negative is not so alarming,
and also serves as good reminder that time averaging is not a proper replacement for the expectation operator in (9).
Suboptimal case

Clearly the observing system in the example just considered is not the best to estimate the most interesting part of
the system error. We consider next a situation where the observing system measures both components of the state vector
with similar accuracy, that is, we now take H

k|k�1 = I, with R
k

= 0.1I. Furthermore, we take both components of
the dynamical system (16a) to be uncertain, but still consider the first component to be more accurately modeled than the
second by choosing the system error covariance to be Q = diag(1/3, 10/3). This resetting of observing system and model
uncertainties also amounts to a fairly simple case. Therefore, we add a degree of difficulty to the problem by replacing the
optimal filter with a suboptimal filter, chosen to be a Wiener filter in this case. This is aimed at helping us investigate the
practical question of whether the procedure proposed in Section 1 is able to provide estimates of system error covariance
parameters under suboptimality. The Wiener filter is obtained by fixing the Kalman gain matrix in (13) to be that of the
nearly asymptotic (step k = 100) integration of a corresponding Kalman filter run conducted for the present case, which
is

K̃
k

= K̃ =

✓
0.81057450628741 0.00511881474310
0.00511881474310 0.97194107724266

◆
.

Figure 2 displays the results in this case. The two panels on the left correspond to the top two panels in Fig. 1 and
indicate that even though the filter is suboptimal, the estimates from both filter and smoother are quite good – one cannot
visually distinguish the filter and smoother estimates from the truth. The four panels on the right show the time series
of each of the four elements of the 2⇥ 2 system error matrix Q as estimated from the sample cross-covariance in (9).
As before, each panel shows two single numbers on its heading reflecting the true value of that element of Q and its
estimated value obtained from the time average of the estimates obtained in the course of the assimilation period. Again,
time-averaged results must be interpreted carefully and only represent a rough estimate of each component. As for the
optimal case considered before, the estimates here are also obtained from a single realization of the residuals and show
considerable variation from time to time. For example, estimates of element Q(1, 1) sometimes show quite large spikes
suggesting system error to be as large as 2, when the true value is only 1/3. This is a reminder again that instantaneous
single realization estimates may seem rather meaningless at times; even the time-averaged value, 0.27136, is not such a
great estimate of this component; the same can be said of the other components. Still, even this single-realization estimate,
obtained on the basis of a suboptimal filter, captures the fact that system errors are present; that there is a substantial
difference between errors in the first and second components of the state vector; and that covariant (off-diagonal) errors
are largely absent.

To further emphasize the significance of single- versus multiple-realization sampled errors, we experiment with a 30-
sample Monte Carlo simulation for this suboptimal Wiener filter case. Figure 3 summarizes the results. Though similar to
Fig. 2, the quantities plotted here correspond to Monte Carlo averages. First notice the two panels on the left, showing the
time series of the mean estimates for each component of the state vector, and how they now display the behavior expected
from a (deterministic) damped harmonic oscillator — more Monte Carlo samples would be needed to see the state more
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Figure 1. Illustration of the lag-1 residual cross-covariance approach for estimating model error estimation: optimal filter case. Top and
middle panels embed three curves: red for the truth; green for filter estimate; and blue for lag-1 smoother estimate. The bottom panel
shows the diagonal of the single-realization cross-covariance in (1), which provides an estimate of the model error variance at each
time. The true value of the error variance (Qt) can be compared with the rough estimate obtained by averaging the sample estimates
over time (Qe).
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Suboptimal case

Clearly the observing system in the example just considered is not the best to estimate the most interesting part of
the system error. We consider next a situation where the observing system measures both components of the state vector
with similar accuracy, that is, we now take H

k|k�1 = I, with R
k

= 0.1I. Furthermore, we take both components of
the dynamical system (16a) to be uncertain, but still consider the first component to be more accurately modeled than the
second by choosing the system error covariance to be Q = diag(1/3, 10/3). This resetting of observing system and model
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practical question of whether the procedure proposed in Section 1 is able to provide estimates of system error covariance
parameters under suboptimality. The Wiener filter is obtained by fixing the Kalman gain matrix in (13) to be that of the
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Figure 2 displays the results in this case. The two panels on the left correspond to the top two panels in Fig. 1 and
indicate that even though the filter is suboptimal, the estimates from both filter and smoother are quite good – one cannot
visually distinguish the filter and smoother estimates from the truth. The four panels on the right show the time series
of each of the four elements of the 2⇥ 2 system error matrix Q as estimated from the sample cross-covariance in (9).
As before, each panel shows two single numbers on its heading reflecting the true value of that element of Q and its
estimated value obtained from the time average of the estimates obtained in the course of the assimilation period. Again,
time-averaged results must be interpreted carefully and only represent a rough estimate of each component. As for the
optimal case considered before, the estimates here are also obtained from a single realization of the residuals and show
considerable variation from time to time. For example, estimates of element Q(1, 1) sometimes show quite large spikes
suggesting system error to be as large as 2, when the true value is only 1/3. This is a reminder again that instantaneous
single realization estimates may seem rather meaningless at times; even the time-averaged value, 0.27136, is not such a
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obtained on the basis of a suboptimal filter, captures the fact that system errors are present; that there is a substantial
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are largely absent.

To further emphasize the significance of single- versus multiple-realization sampled errors, we experiment with a 30-
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A	  twist	  on	  Maybeck	  (1982;	  Vol.	  2,	  Ch.	  8);	  see	  Todling	  (2014;	  QJRMS)	  

Single	  realiza9on	  

Stochas9c	  harmonic	  oscillator	  system	  

30-‐sample	  Monte	  Carlo	  

Q	  x1	  
x2	  

Some	  Traps	  to	  Avoid	  

Qt(1,1)=0.333	  	  
Qe(1,1)=0.271	  

Qt(1,1)=0.	  
Qe(1,1)=-‐0.025	  

Qt(1,1)=3.333	  
Qe(1,1)=2.945	  

Qt(1,1)=0.333	  
Qe(1,1)=0.328	  

Qt(1,1)=0	  
Qe(1,1)=0.003	  

Qt(1,1)=3.333	  
Qe(1,1)=3.314	  



Robust	  es9ma9on	  can	  be	  achieved	  with	  adap9ve	  procedures	  

Something	  to	  Keep	  in	  Mind	  

The	  assimila9on	  scheme	  here	  is	  an	  adap9ve	  op9mal	  interpola9on.	  In	  this	  case,	  the	  
propagated	  error	  covariance	  (the	  costly	  part	  of	  the	  EKF)	  is	  replaced	  by	  a	  constant	  forecast	  
error	  covariance	  matrix	  scaled	  by	  a	  single	  parameter	  that	  gets	  to	  be	  adap9vely	  es9mated	  on	  
the	  basis	  of	  the	  observa9on-‐minus-‐forecast	  residuals	  (see	  Dee	  1995).	  The	  9me	  series	  of	  the	  
es9mated	  parameter	  is	  displayed	  in	  the	  lower	  panel	  above.	  



Closing	  Remarks	  
Ø Solid	  understand	  of	  the	  three	  es9mates	  (MV,	  
MAP,	  ML)	  examined	  here	  gives	  a	  broad	  
perspec9ve	  on	  es9ma9on	  problems.	  

Ø Most	  methods	  employed	  in	  prac9ce	  fall	  under	  
the	  LS-‐type	  category.	  

Ø Adap9ve	  procedures	  are	  typically	  the	  most	  
robust	  –	  viz.	  modern	  hybrid	  ensemble-‐varia9onal	  
approaches.	  


